Supplementary table 2. Risk Factor Weighting Tables #### Notes on this table. - The study data are grouped by risk factors, so studies with multiple outcomes appear multiple times. - Within each risk factor, the studies are listed by study design (so cohort studies; case control; cross-sectional), then by quality score and then by size. - The results are colour coded according to the key below. - Confidence intervals, odds ratios and P values are as reported in terms of number of significant figures or absolute value or "NS" not significant. | Risk factor affects risk of exacerbation (either positively or negatively. | | |---|--| | Risk factor null effect. | | | Complex or difficult to interpret study – see the comments column. Unexpected results (typically confounded by severity or indication) are indicated in this way. | | #### Abbreviations used in this table | d
w | day
week | ED
FU | Emergency Department
Follow up | ATAQ
BMQ | Asthma Therapy Assessment Questionnaire
Beliefs about Medicines Questionnaire | |--|--|--------------------------------|---|---|--| | m
y | month
year | | | | | | RX
BD
ICS
LABA
OCS
SABA | Therapy Bronchodilator Inhaled corticosteroid Long-acting beta agonist Oral corticosteroid course Short-acting beta agonist | H/O
FH
AR
GORD
ETS | History of Family History Allergic rhinitis Gastro-oesophageal reflux disease Environmental tobacco smoke | FEV ₁
FVC
FeNO
SPT
BMI | Forced Expiratory Volume in one second
Forced Vital Capacity
Fractional exhaled Nitric Oxide
Skin Prick Test
Body mass index | | n
N
X
OR
RR
GEE | Number of children Number of centres/sites/schools/practices Number with outcome Odds Ratio Relative Risk Generalised estimating equations | NAEPP
NHLBI | National Asthma Education and Prevention Program
National Heart, Lung, and Blood Institute | PC20 | Provocative concentration of methacholine causing a 20% drop in FEV ₁ | ### Asthma disease status #### **Previous exacerbation** | Study ID
Design,
Quality score | Country, Sample size, Population, Ages | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%CI or significance | Reference
group or
comparator | Analysis
used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |--------------------------------------|---|---|--|-------------------------|---|-----------------------|---|---------------------------|---|---| | Thomas 2005
Cohort, 8/9 | UK, n=9,522,
General practice,
Age 6-15y (mean
10.6y) | OCS use during baseline period (6m) | Hospitalisation | OR | 2.24 | 1.08 to 4.67 | No OCS use
during baseline
period (6mo) | Logistic regression | Multivariable (age, gender, OCS, SABA, dose ICS) | [Reference group
assumed - not
stated explicitly] | | Haselkorn
2009b
Cohort, 8/9 | US, n=563,
Severe/difficult to
treat asthma,
Age 6-11y | Severe exacerbation in previous 3m | ≥1 OCS
courses
reported during
12m | OR | 1.99 | 1.51 to 2.61 | No recent
severe
exacerbation in
previous 3m | Stepwise
model | Multivariable (age, sex, race, BMI, allergies, ETS, ICS, control) | TENOR study | | Engelkes 2016 Cohort, 7/9 | Netherlands,
n=14,303,
GP records,
Age 5-18y | Previous exacerbations | Hospitalisation,
ED visit, or OCS
course | RR | 1.99 | 1.40 to 2.83 | Ref group: no previous exacerbations | Poisson
regression | Age, gender | [Model 1] | | Tolomeo 2009
Cohort; 7/9 | US, n=298,
Hospitalised in
previous year, | Asthma related
ED visit in
previous 12m | Hospitalisation | OR | 3.12 | 1.12 to 8.33 | No asthma
related ED visit
in previous 12m | Logistic regression | Controlled for 'all variables' | [Likely controlled
for age, race,
income, sex, | | | Age 2-15y (mean 6.4y) (58% 5+yrs) | Asthma-related
ED visit in
previous 12m | ED visit | OR | 3.32 | 1.39 to 7.69 | No asthma
related ED visit
in previous 12m | Logistic regression | | insurance, asthma severity] | | Schatz 2003
Cohort, 6/9 | US, n=4,197, Age
3-17y (mean age
9.5y (SD 4.1) | Hospitalisation in previous year | Hospitalisation in study year | x/n (%)
hospitalised | Hospitalised: 6/57 (10.5%) vs not hospitalised: 50/4140 (1.2%) | P<0.001 | No
hospitalisation in
previous year | Fisher's exact test | 'All potential predictors' | | | | | Hospitalisation in previous year | Hospitalisation in study year | OR | 3.37 | 1.61 to 7.04 | No
hospitalisation in
previous year | Logistic regression | | | | | | ED visits in previous year | Hospitalisation in study year | x/n (%) ED
visits | Hospitalised: 10/57 (17.5%) vs Not hospitalised: 23/4140 (6.7%) | P<0.001 | No
hospitalisation in
previous year | Fisher's exact test | | | | | | OCS course in previous year | Hospitalisation in study year | Mean (SD) | Hospitalised: 1.37
(1.68) vs Not
hospitalised: 0.55
(0.90) | P<0.001 | No
hospitalisation in
previous year | Wilcoxon
rank sum test | | | | Wu 2011 Cohort, 6/9 | US, n=1019,
Children
Age 5-12y | ED visit or hospitalisation previous 12m | OCS use, ED visit or hospitalisation | Exacerbatio
ns in trial
year x/n(%) | Prior ED/hospital
197/512 (39%) vs
no prior ED/hospital | P<0.0001 | Comparison of children with vs without prior | Multivariate
modelling
(using GEE) | Age, Use of ICS
FEV1/FVC ratio,
methacholine | CAMP study. Authors give raw beta value as the | |---|---|---|---|---|---|--------------|--|--|--|--| | | , igo o 12) | OCS course in previous 6m | | , you wanted | 118/538 (22%) Prior OCS course 154/320 (48%) vs no prior OCS course 159/716 (22%) | P=0.0005 | event | (48.19 322) | response and eosinophil count | effect measure | | Zeiger 2012
Cohort, 5/9 | US, n=289
Children with
severe or difficult-
to-treat asthma.
Age 6-12y | Exacerbation at baseline | Self-reported (at 3,6 and 12m) hospitalisation, ED visit, or a OCS course | OR | OR 2.94 | 1.71 to 5.07 | No exacerbation at baseline | Multivariable
logistic
regression | Age groups | Control classified according to NHLBI | | Covar 2008
Cohort, 5/9 | US, n=285,
Mild-moderate
persistent asthma
Age 6-14y | OCS course in the previous year | OCS use, ED visit or hospitalisation | OR | 2.10 | 1.42 to 3.09 | Reference
group: no OCS
use in the
previous year | Multivariate logistic regression (using GEE) | Multivariable | | | Forno 2010
Cross-
sectional, 7/10 | Costa Rica,
n=465,
Age 6-14y | OCS course in previous year | Hospitalisation
or ≥2 ED/urgent
care visits in
previous year | OR | 4.1 | 2.6 to 6.5 | No OCS course in previous year | Multivariate
stepwise
logistic
regression | Age, sex, lung
function, SABA,
specific IgE,
parental education | [Data from 'Model
1'] | | Quezada 2016 Cross- sectional, 6/10 | US, n=200,
Exacerbators:110
Non-
Exacerbators:185 | OCS course in previous year | OCS use or
urgent care
during 24w
study | x/n (%) | Exacerbators: 80% (88/110) Non-Exacerbators: 61% (112/185) | P<0.001 | No OCS course in previous year | Fisher test | None | Recruited to a trial
of proton-pump
inhibitors for
asthma | | | Age 6-17y (mean 11yrs) | Unscheduled
health care visits
for asthma in
past year | OCS use or
urgent care
during 24w
study | x/n (%) | Exacerbators:
91/110 (83%)
Non-Exacerbators:
127/185 (69%) | P<0.01 | No unscheduled
health care visits
for asthma in
past year | | | | | Butz 2000 Cross- sectional, 4/10 | US, n=686, Inner
city, 99% African
American,
Age 5-12y | Nebuliser use for relief of acute symptoms ≥1d/m in | Hospitalised in previous 6m | x/n(%) | Nebuliser 60/231
(26%)
vs no nebuliser
41/455 (9.0%) | P=0.001 | No nebuliser use for relief of acute symptoms ≥1d/m in | Chi ² test | None | | | | | previous 6m) | ED visit ever | x/n (%) | Nebuliser
171/231 (74%)
vs no nebuliser
238/455 (52%) | P=0.001 | previous 6m) | | | | | | | | OCS course in previous 12m | Mean (SD) | Nebuliser use 3.8 (9.4)
Vs no nebuliser
1.3 (6.0) | P<0.001 | | | | | ### Persistent symptoms (Asthma severity/symptom control) | Study ID
Design,
Quality score | Country, Sample size,
Population, Ages | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%CI or significance | Reference
group or
comparator | Analysis
used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |--|---|---|---|---------------------------------|----------------------|-----------------------|---|---|---|---| | Robroeks
2012
Cohort study,
9/9 | The Netherlands,
n=38, Children
with severe
asthma,
Age 6-16y: (mean
10.7y (SD 0.4)) | Asthma control
score (as used
in AIRE survey) | Severe (reduced
FEV ₁ , needing
OCS, admitted)
Moderate
(symptoms but no
OCS) | ß:
regression
coefficient | ß=0.04 SE: 0.02 | P=0.007 | Asthma control score: continuous variable | Multivariate Cox regression analysis of the time until exacerbation | Multivariable (lung
function, control,
FeNO) | Intensively monitored cohort. | | Haselkorn
2009b
Cohort, 8/9 | US; n=563,
Severe/difficult to
treat asthma,
Age 6-11y | Very poorly controlled asthma | ≥1 OCS courses
reported in 12
months | OR | 1.40 | 1.08 to 1.80 | Reference
group: not well
controlled
asthma | Stepwise
model | Multivariable (age, sex, race, BMI, allergies, ETS, ICS, control) | Control assessed
with ATAQ as per
2007 NHLBI
guidelines) | | | , | Well controlled asthma | ≥1 OCS courses
reported in 12
months | OR | 0.89 | 0.45 to 1.75 | Reference
group: not well
controlled
asthma | | · | | | | | Very poorly controlled asthma | ≥1 OCS courses
reported in 12
months | OR | 1.62 | 1.16 to 2.25 | Reference
group: not or
well controlled
asthma | | | | | Kwong 2012 | US, n = 960,
Inner city children, | Underlying asthma severity: | ED visit or hospitalisation | OR | 0.2 | 0.1 to 0.6 | Reference group: severe | Logistic regression | Age, ethnicity, sex, baseline asthma | Severity assessed at baseline by | | Cohort, 6/9 | Age 2-18y (60%
were 6-11y) | mild intermittent | OCS course, ED visit or hospitalisation | OR | 0.6 | 0.4 to 1.0 | persistent | | control, clustering effect of site of care | NAEPP definitions Control assessed | | | | Underlying asthma severity: | ED visit or hospitalisation | OR | 0.59 | 0.3 to 1.3 | Reference group: severe | | | on basis of symptoms, FEV ₁ , | | | | mild persistent | OCS course, ED visit or hospitalisation | OR | 1.20 | 0.8 to 1.9 | persistent | | | medication use, exacerbations. | | | | Underlying asthma severity: | ED visit or hospitalisation | OR | 0.58 | 0.3 to 1.2 | Reference group: severe | | | | | | | moderate
persistent | OCS course, ED visit or hospitalisation | OR | 1.02 | 0.7 to 0.6 | persistent | | | | | | | Moderate asthma control | ED visit or hospitalisation | OR | 0.96 | 0.5 to 1.8 | Reference
group: Difficult | | | | | | | | OCS course, ED visit or hospitalisation | OR | 0.74 | 0.5 to 1.1 | to control
asthma | | | | | | | Well-controlled asthma | ED visit or
hospitalisation
OCS course, ED
visit or | OR
OR | 0.47 | 0.2 to 0.9
0.3 to 0.7 | Reference
group: Difficult
to control
asthma | | | | |----------------------------------|---|--|--|----------|---|--------------------------|--|--|--|---| | Haselkorn | US, n=82, Severe | Persistent very | hospitalisation Composite score: | OR | 6.4 | 1.18 to 34.5 | Reference | Multivariable | Age, prior ED visits | TENOR study | | 2009a Cohort, 6/9 | or difficult to treat
asthma: poorly
controlled at
baseline
Age 6-11y | poorly controlled asthma | hospitalisation/ED visit/OCS course | | | | group:
improved to
not/well
controlled
asthma | analyses:
logistic
regression | or hospitalisation,
controller use,
BMI, non/allergic
triggers, FVC %
predicted, ethnicity | Control assessed
with ATAQ as per
2007 NHLBI
guidelines) | | Halterman
2001
Cohort, 5/9 | US, n=165,
11 diverse primary
care settings,
Age 75% 6-12y | Asthma
severity: mild
intermittent | OCS course
during study (3m) | x/n (%) | Mild-intermittent
8/58 (14%) vs Mild-
severe persistent
27/107 (25%) | NS | Mild, moderate
or severe
persistent
asthma | Chi ² test | None | Asthma severity
assessed using
NHLBI criteria | | | | | ED visit during
study (3m) | | Mild-intermittent
2/58 (3%) vs Mild-
severe persistent
12/107 (11%) | NS | | | | | | Lieu 1997 | US, n=1498, | Parent assessment of | Hospitalisation | OR | 1.87 | 1.42 to 2.48 | Odds/increase | Multivariate | Income, SABA | [Parent assessment of | | Case-control, 7/9 | (508 cases, 990 controls),
Age ≤14y | severity | ED visit | OR | 1.93 | 1.40 to 2.65 | in category
(mild, moderate,
moderately
severe, severe) | logistic
regression | prescriptions,
education status
previous ED visits,
ICS prescriptions | severity may not
be robust] | | Dales 2002 | Canada; n=2,986
Children from 136 | Asthma symptoms daily | ED visit or hospitalisation | OR | 2.32 | 1.70 to 3.17 | Reference: no daily symptoms | | Outcomes weighted for each | Statistical adjustment for | | Cross-
sectional, 7/10 | schools,
(5-19yrs) | Asthma disturbing sleep | ED visit or hospitalisation | OR | 2.38 | 1.77 to 3.21 | Reference: no disturbed sleep | | student based on
probability of the
school being
sampled and
response rates | design effects
(including ICC) | | Stingone
2006a
Cross- | US, n=530, Inner
city minority
population,
Age 5-12y | Sleep
disturbance
≥1d/w | ED visit or
hospitalisation in
previous 12m | OR | 7.84 | 2.73 to 22.4 | Reference
group: No sleep
disturbance | Multivariate
logistic
regression | Sex, income,
ethnicity, source of
usual care,
insurance, | | | sectional, 7/10 | | Sleep
disturbance
<1d/w | ED visit or
hospitalisation in
previous 12mo | OR | 4.91 | 2.73 to 8.79 | Reference
group: No sleep
disturbance | | delaying care, use of controller meds | | | Forno 2010 | Costa Rica,
n=465, | Symptoms for ≥3m/y | Hospitalisation or ≥2 ED/urgent | OR | 1.9 | 1.1 to 3.3 | Symptoms for <3m/y | Multivariate stepwise | Age, sex, parental education level | [Data from 'Model
1'] | | Cross-
sectional; 7/10 | Age 6-14y | | care visits in previous year | | | | | logistic
regression | | | | Lasmar 2007 | Brazil, n=126, | Severe | Urgent care | OR | 2.09 | 1.05 to 4.44 | Reference: | Logistic | Age range, AR, | Reference group | |-----------------|--------------------|-----------------|-------------|------------|--------------------|--------------|-----------------|------------|----------------|--------------------| | | Persistent | persistent | | | | | moderate | regression | number of | assumed not | | Cross- | asthma, | asthma | | | | | persistent | | exacerbations | stated | | sectional, 7/10 | Age 3-17y | | | | | | asthma | | | | | Canino 2012 | US/Puerto Rico, | Parental | ED visit | Mean | Frequent ED use: | P<0.001 | Frequent ED | t-test | None | [Unclear scoring | | | n=804, White and | perception of | | score | 3.4 (SD 0.7) | | visits (2+ in | | | Assume: 0 to 5: | | Cross- | Hispanic children, | severity (very/ | | | vs Infrequent ED | | 12m) Infrequent | | | very mild to very | | sectional, 2/10 | Age 7-15y: mean | mild, moderate, | | | use: 2.7 (SD 0.9) | | (0-1 in 12m) | | | severe] | | | age 10.6y (SD2.5) | very/ severe) | | | | | | | | | | | | Clinician | ED visit | Mean | Frequent ED use: | P<0.001 | Frequent ED | | | Control score | | | | assessed | | score (SD) | 1.3 (0.7) vs | | visits (2+ in | | | based on | | | | asthma control | | | Infrequent ED use: | | 12m) Infrequent | | | symptoms, SABA | | | | | | | 1.1 (0.7) | | (0-1 in 12m) | | | use, lung function | #### **Lung function** | Study ID
Design,
Quality score | Country, Sample size, Population, Ages | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%CI or significance | Reference
group or
comparator | Analysis
used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |---|--|--|--|---------------------------------|----------------------|-----------------------|--|--|--|--| | Robroeks
2012
Cohort Study
9/9 | The Netherlands,
n=38, Children
with severe
asthma,
Age 6-16y: (mean | FEV ₁ % predicted at baseline | Severe (reduced
FEV1, needing
OCS, admitted)
Moderate
(symptoms but no
 ß:
regression
coefficient | ß= -0.02 (SE: 0.03) | P=0.43 | FEV1%
predicted:
continuous
variable | Multivariate Cox regression analysis of the time until | Multivariable (lung
function, control,
FeNO) | Intensively monitored cohort. | | Wu 2011 | 10.7y (SD 0.4))
US, n=1019, | FEV ₁ /FVC | OCS) OCS use, ED visit | ß: | 0.023 | -0.040 | OR not given | exacerbation | Age, FEV ₁ /FVC, | CAMP study | | Wu Zu i i | Children, | FEV1/FVC | or hospitalisation | estimate | 0.023 | to -0.006 | OR not given | Multivariate modelling | PC20, eosinophils | CAIVIP Study | | Cohort, 6/9 | Age 5-12y | FEV1% predicted | OCS use, ED visit or hospitalisation | ß:
estimate | | P=0.29 | | (using GEE) | Use of ICS | | | McCormak
2013 | US, n=150,
Persistent asthma
with exacerbation | FEV ₁ /FVC at
3monthly study
visits | ED visit in 3m following study visit | OR | 1.34 | 0.98 to 1.83 | OR for every
10% decrease
in FEV ₁ /FVC | Logistic
regression
with | Age, sex,
FEV ₁ /FVC | | | Cohort, 6/9 | in previous 12m,
Age 5-17y (mean
11y) | | Hospitalisation in
3m following
study visit | OR | 2.23 | 0.84 to 5.86 | | generalised
estimating
equations | | | | | | FEV ₁ /FVC at
3monthly study
visits | Any acute
healthcare use in
3m following
study visit | OR | 1.32 | 1.01 to 1.72 | | | | | | Blatter 2016 | Puerto Rico,
n=304, Urban
population, | FEV ₁ /FVC | ≥1 ED visit,
hospitalisation or | OR | 1.0 | 0.9 to 1.0 | Continuous
variable: unclear
unit | Stepwise
multivariate | Sex and age | | | Case-control, 7/9 | Age 6-14y | | OCS use in previous 12m | | | | | | | | |--|--|--|---|-----------------|---|--------------|-----------------------------------|--|--|---| | Bacharier
2003
Cross-
sectional, 8/10 | US, n=1,041,
Mild or moderate
asthma,
Age 5-12y | Greater
FEV ₁ /FVC (pre-
BD) | Prior hospitalisation (at at any time during their life). | OR | 0.96 | 0.94 to 0.98 | Analysed as a continuous variable | Logistic regression | Clinic, race,
income, and
gender | CAMP study baseline data. | | Forno 2010
Cross-
sectional; 7/10 | Costa Rica,
n=465,
Age 6-14y | FEV ₁ % change post-bronchodilator | Hospitalisation or
≥2 ED/urgent
care visits in
previous year | OR | 1.03 | 1.01 to 1.1 | Unadjusted OR: | Multivariate
stepwise
logistic
regression | Age, sex, parental education level | [Data from 'Model
1']
[Unadjusted data] | | Quezada 2016 Cross- sectional, 6/10 | US, n=200
Exacerbators:110
Non-
Exacerbators:185, | Baseline
FEV ₁ /FVC (pre-
BD) | OCS use or
urgent care during
24w study | Mean
ratio % | Exacerbators: 77% (75 to 79%) Non-Exacerbators: 81% (80 to 82%) | P<0.01 | Analysed as a continuous variable | Wilcoxon
rank-sum test | None | Recruited to a
trial of proton-
pump inhibitors
for asthma | | · | Age 6-17y (mean 11yrs) | Baseline PC20
methacoline
provocation test | OCS use or urgent care during 24w study | Mean
PC20 | Exacerbators: 2.8 (1.8 to 3.7) Non-Exacerbators: 3.1 (2.4 to 3.7) | P= 0.55 | Analysed as a continuous variable | | | | ### Medication use ## **Sub-optimal regime** | Study ID
Design,
Quality score | Country, Sample size, Population, Ages | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%CI or significance | Reference
group or
comparator | Analysis
used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |--------------------------------------|--|--|-----------------------------------|-------------------|----------------------------|-----------------------|--------------------------------------|--------------------------------------|--|--| | Baltrus 2017
Cohort, 9/9 | US,, n=615,432,
Children on
Medicaid from 28 | Low controller/
total medication
ratio (<0.5) | ED visit | OR | 2.05 | 2.02 to 2.08 | Reference
group: no
medication | Individual
logistic
regression | Sex, race, long-
term controller
medication ratio | County-level data excluded because | | · | states, | High controller/
total medication
ratio (≥0.5) | | | 1.20 | 1.16 to 1.24 | _ | | | generalisability concerns | | Spahn 2009 | US, n=20,084 observations, | ICS/LABA use in the summer. | Hospitalisation in the autumn | OR | 0.49 | 0.39 to 0.61 | Reference
group: No | Generalised estimating | Adjusted for age, sex, summertime | | | Cohort, 8/9 | Health plan, pharmacy claims, | | ED visit in the autumn | OR | 0.60 | 0.54 to 0.67 | ICS/LABA
during the | equations
(GEEs) | asthma-related ED, hospital visits, OCS | | | | Age 4-11y (mean 8.91y) | | OCS use in the autumn | OR | 0.62 | 0.57 to 0.67 | summer | | use, SABA use | | | Andrews 2013 | US, n=19,512,
Medicaid | Controller/total medication ratio | ED visits or hospitalisations in | OR | 1.6 | 1.4 to 1.8 | Reference:
controller/total | Logistic regression | Age, gender, race, and rurality | Medication in baseline year | | Cohort, 8/9 | registered, Age 1-
18y (mean 8.9y) | <0.5 | subsequent 12m | | | | ratio >0.5 | | | with exacerbations in FU year | | Zhang 2013 | Canada, n=9230,
Routine clinical | Suboptimal drug regimen | Hospitalisations | OR | 2.2 | 1.4 to 3.4 | Reference group: Optimal | Logistic regression | Gender, socioeconomic | See figure 1 for definition of | | Cohort 8/9 | and dispensing data, Age 5-11y | (high SABA,
low ICS) use
over 12m | | | | | regimens | | status, LABA, prior
hospital admission
and/or ED visit | 'appropriate' | | Engelkes 2016 | Netherlands,
n=14,303, | Any previous asthma | Hospitalisation, ED visit, or OCS | RR | 1.16 | 1.12 to 1.19 | Reference group: no | Poisson regression | Age, age ² , gender | [Model 1] | | Cohort, 7/9 | Routine GP
records, Age 5-
18y | treatment | course | | | | asthma
treatment | Ğ | | | | Farber 2004 | US, n=1,504, | Controller/total | Hospitalisation or | OR | Intermittent 1.10 | 0.21 to 5.85 | Reference: | Logistic | Child's age, sex, | [Comparison of | | 0 1 1 7/0 | Routine data: | medication ratio | ED visit in FU 12m | OR | Persistent 0.79 | 0.33 to 1.87 | controller/total | regression | race/ethnicity, | medication in | | Cohort, 7/9 | health plan claims
data and parental | 0 in baseline
12m | | OR | Persistent ≥4 SABA
0.75 | 0 .09 to 6.11 | medication ratio > 0.5 in | | parent's education levels, single adult | baseline year
with | | | interviews, | Controller/total | Hospitalisation or | OR | Intermittent 2.06 | 0.29 to14.82 | baseline 12m | | household, and | exacerbations in | | | 2–16y. mean age | medication ratio | ED visit in FU 12m | OR | Persistent 0.87 | 0.28 to 2.70 | 4 | | poverty levels | FU year] | | | 8.3y (SD 3.9) | 0.01-0.33 in baseline 12m | | OR | Persistent ≥4 SABA 2.54 | 0.46 to 14.00 | | | | | | | | | | OR | Intermittent 1.51 | 0.27 to 8.47 | | | | | | | | Controller | Hospitalisation or | OR | Persistent 1.08 | 0.47 to 2.51 | | | | | |-----------------|-------------------|------------------|----------------------|-------------|--------------------|--------------|------------------|---------------|---------------------|--------------------| | | | medication ratio | ED visit in FU 12m | OR | Persistent ≥4 SABA | 0.09 to 4.17 |] | | | | | | | 0.34-0.5 in | | | 0.60 | | | | | | | | | baseline 12m | | | | | | | | | | | | Controller | ED visits | OR | 1.4 | 1.1 to1.8 | | | | | | | | medication ratio | High use of family | OR | 2.3 | 1.7 to 3.1 | | | | | | | | 0.34-0.5 in | practice service | | | | | | | | | | | baseline 12m | (top 5%) | | | | | | | | | Schatz 2003 | US, n=4,197, Age | ICS/total | Hospitalisation in | Mean ICS | Hospitalised: 0.21 | NS | | Wilcoxon rank | 'All potential | | | 0 1 1 0/0 | 3-17y (mean age | medication ratio | study year | prescriptio | (0.24) vs Not | | | sum test | predictors' | | | Cohort, 6/9 | 9.5y (SD 4.1) | | | ns (SD) | hospitalised: 0.26 | | | | | | | | | | | | (0.28) | | | | | | | Rust 2013 | US, n=43,156, | Low controller- | ED visit in 90d | OR | 1.21 | 1.14 to 1.27 | Reference | Logistic | Age, gender, race, | | | 11401 2010 | Children | to-total asthma | after initiating ICS | | | | group: high | regression | rural/urban, state, | | | Cross- | registered on | medication ratio | Rx | | | | controller-to- | | asthma severity, | | | sectional, 9/10 | Medicaid, | (<0.5) | Hospitalisation in | OR | 1.70 | 1.45 to1.98 | medication ratio | | doctor visits, ICS | | | , | Age 5-12y | , | 90d after initiating | | | | (≥0.5) | | adherence | | | | | | ICS Rx | | | | | | | | | Vernacchio | US, n=1,562 (in 3 | No controller | Hospitalisation, ED | RR 2008 | 3.35 | 2.24 to 5.00 | Reference | Logistic | Age and gender | Multiple tests for | | 2013 | separate year | prescriptions | visit or OCS | RR 2009 | 2.11 | 1.24 to 3.58 | group: ≥1 | regression | | ICS use: the | | | cohorts), | | course | RR 2010 | 2.71 | 1.70 to 4.31 | prescription | | | ones cited are | | Cross- | Persistent | 50-75% of year | | RR 2008 | 0.82 | 0.48 to 1.40 | >75% of year | | | those defined by | | sectional, 9/10 | asthma, | covered by ICS | | RR 2009 | 1.01 | 0.62 to 1.6 | covered by ICS | | | HEDIS | | | Age 5-17y | prescriptions | | RR 2010 | 0.95 | 0.59 to 1.53 | prescriptions | | | | | | | <50% of year | |
RR 2008 | 1.24 | 0.85 to 1.82 | >75% of year | | | | | | | covered by ICS | | RR 2009 | 1.16 | 0.79 to 1.69 | covered by ICS | | | | | | | prescriptions | | RR 2010 | 0.91 | 0.62 to 1.35 | prescriptions | | | | | | | Low controller- | | RR 2008 | 1.42 | 0.91 to 2.22 | Reference: high | | | | | | | to-total asthma | | RR 2009 | 1.67 | 1.14 to 2.46 | controller/total | | | | | | | medication ratio | | RR 2010 | 1.62 | 1.10 to 2.38 | medication ratio | | | | | | | (<0.5) | | | | | (≥0.5) | | | | #### **Controller medication use** | Study ID
Design,
Quality score | Country, Sample size, Population, Ages | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%CI or significance | Reference
group or
comparator | Analysis
used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |--------------------------------------|---|--|--------------------------------------|-------------------|--|-----------------------|--------------------------------------|------------------------|--|---| | Adams 2001 | US, n=11,195, | 1-5 controller | ED visit | RR | 0.3 | 0.3 to 0.4 | Reference: no | Multiple | Age, gender, | | | | Urban setting, | prescriptions | Hospitalisation | RR | 0.4 | 0.3 to 0.6 | controller use | logistic | frequency of | | | Cohort, 9/9 | Age 3-15 y | >5 controller | ED visit | RR | 0.7 | 0.5 to 0.9 | Reference: no | regression | reliever dispensing | | | | | prescriptions | Hospitalisation | RR | 0.5 | 0.3 to 0.9 | controller use | | managed care organisation, | | | Thomas 2005
Cohort; 8/9 | UK, n=9,522,
General practice,
Age 6-15y (mean | Low dose ICS
during baseline
period (6m) | Hospitalisation | OR | 1.81 | 1.05 to 3.14 | Unclear as to reference group assume | Logistic regression | Multivariable (age, gender, OCS, SABA, dose ICS) | Confounding by indication | | Conort, 0/3 | 10.6y) | High dose ICS during baseline period (6m) | Hospitalisation | OR | 5.60 | 2.11 to14.88 | no use of ICS | | OADA, dose 100) | | | Engelkes 2016 | Netherlands,
n=14,303, | Previous ICS prescriptions | Hospitalisation,
ED visit, or OCS | RR | 1.25 | 1.18 to 1.33 | Reference
group: no ICS | Poisson regression | Age, age ² , gender | [Model 1] | | Cohort, 7/9 | Routine GP records, Age 5-18y | p | course | | | | prescriptions | 109.0000 | | [Confounding by indication] | | Farber 2004 | US, n=1,504, | No controller | Hospitalisation or | OR | Intermittent 0.55 | 0.19 to 1.63 | Controller | Logistic | Child's age, sex, | [Comparison of | | | Health plan | medication in | ED visit in FU | OR | Persistent 0.72 | 0.37 to 1.39 | medication in | regression | race/ethnicity, | medication in | | Cohort, 7/9 | claims and
parental
interviews,
2-16y. mean age
8.3y (SD 3.9) | baseline 12m | 12m | OR | Persistent ≥4
SABA 0.52 | 0.10 to 2.55 | baseline 12m | | parent's education
levels, single adult
household, and
poverty levels | baseline year
with
exacerbations in
FU year] | | Schatz 2003
Cohort, 6/9 | US, n=4,197,Age
3-17y (mean age
9.5y (SD 4.1) | ICS prescriptions | Hospitalisation in study year | Mean
(SD) | Hospitalised: 1.37 (2.06) vs Not hospitalised: 1.07 (1.67) | NS | NA | Wilcoxon rank sum test | 'All potential predictors' | Could be considered clinically relevant | | | | | | | (1.07) | | | | | | | | | ICS prescriptions | Hospitalisation in study year | OR | 0.73 | 0.59 to 0.89 | Continuous
Variable | Logistic regression | | | | Wu 2011 | US, n=1019,
Children, | ICS use | OCS use, ED visit or hospitalisation | ß:
estimate | -0.45 | -0.73 to -0.17 | | Multivariate modelling | Age, FEV ₁ /FVC, PC20, eosinophils | CAMP study | | Cohort, 6/9 | Age 5-12y | | or nospitalisation | Collinate | | | | (using GEE) | Use of ICS | | | Vasbinder | Netherlands, | ICS adherence | 'Events' = OCS | All | Events 14/40 | Not reported | ICS adherence | A variation | SABA use | Confounding by | | 2016 | n=1,636 included | ≥80% in 12m | use or hospital | x/n (%) | (35%) for vs non- | | <80% in 12m | on Cox | Matching: on age | indication. | | | when first | before 'event' | admission | | events | | before 'event' | proportional | (incidence density | LABA used as a | | Case-control, | prescribed ICS, | | | | 322/1,596 (20%) | | | | sampling). | proxy for asthma | | 9/9 | Age 5-12y (mean 8.1y) | ICS adherence
≥80% in 12m
before 'event' | 'Events' = OCS
use or hospital
admission | No LABA
use: OR | 1.07 | 0.39 to 2.97 | ICS adherence
<80% in 12m
before 'event' | hazards
regression | | severity: a strong
effect modifier
for exacerbations | |--|---|---|---|---------------------------|--|---|--|--|--|--| | | | ICS adherence
≥80% in 12m
before 'event' | 'Events' = OCS
use or hospital
admission | Recent
LABA
use: OR | 4.34 | 1.20 to 15.64 | ICS adherence
<80% in 12m
before 'event' | | | | | Blatter 2016 Case-control, 7/9 | Puerto Rico,
n=304, Urban
population,
Age 6-14y | ICS use in previous 6 m | At least one ED
visit or OCS use
in past 12 m | OR | 4.6 | 2.3 to 9.0 | Reference
group: No ICS
use | Stepwise
multivariate | Sex and age | Confounding by indication | | Rust 2013
Cross- | US, n=43,156,
Children
registered on | <50% of prescription days covered | ED visit | OR | 0.93 | 0.88 to 0.98 | Reference:
≥50% of
prescription | Logistic regression | Age, gender, race,
rural/urban, state,
asthma severity, | Confounding by indication | | sectional, 9/10 | Medicaid,
Age 5-12y | | Hospitalisation | OR | 0.62 | 0.54 to 0.70 | days covered | | doctor visits, ICS adherence | | | Rosas-Salazar
2013
Cross-
sectional, 9/10 | Puerto Rico,
n=351, Urban
children,
Age 6-14y | Use of ICS in prior 6m | At least one ED or urgent care visit in past year | OR | 2.0 | 1.2 to 3.3 | Reference
group: no ICS
use in prior 6m | Multivariate
stepwise
logistic
regression | Age, sex, parental
numeracy, income,
use of ICS, ETS
exposure | Likely
confounding by
indication | | Brehm 2012
Cross-
sectional, 9/10 | Puerto Rico,
n=287, Children
from households
in San Juan,
Ages 6-14 | ICS in previous year | At least one
hospitalisation,
ED, urgent care,
OCS use | OR | 3.3 | 1.8 to 6.1 | Reference
group: no ICS
use in previous
year | | Age, sex, income,
vit D level, African
ancestry, always
outside, high vit D
intake | | | Bacharier
2003
Cross-
sectional, 8/10 | US, n=1,041,
Mild or moderate
asthma,
Age 5-12y | ICS use in past 6m Cromolyn or nedocromil use in past 6m | Prior
hospitalisation (at
any time during
their life) | OR
OR | 1.62 | 1.16 to 2.26
1.15 to 2.39 | Reference: No
ICS use
Reference: No
cromolyn/
nedocromil use | Logistic
regression | Clinic, race,
income, and
gender | CAMP study
baseline data.
[Confounding by
indication] | | Stingone
2006a
Cross-
sectional, 7/10 | US, n=530, Inner
city minority
population,
Age 5-12y | Controller medication in previous 2w: | ED visit or
hospitalisation in
previous 12 m | % | Controller in past
2w: 55% vs No
controller in past
2w: 44% | Excluded from
the final model
because
reported as 'NS' | No controller
medication in
previous 2w | Multivariate
logistic
regression | Sex, income,
ethnicity, usual
care, delaying
care, insurance, | | | Forno 2010
Cross-sectional
7/10 | Costa Rica,
n=465,
Age 6-14y | Controller medication | Hospitalisation,
ED, urgent visits
in previous year | OR | 1.90 | 1.3 to 3.0 | | Multivariate
stepwise
logistic
regression | Age, sex, parental education level | | | Quezada 2016 Cross- sectional, 6/10 | US, n=200
Exacerbators:110
Non-
Exacerbators:185 | Use of ICS | OCS course or urgent care during 24w study | x/n (%) | Exacerbators: 88/
110 (80%) vs Non-
Exacerbators:
112/185 (61%) | P<0.001 | No use of ICS | Fisher test | None | [Confounding by indication] | | | Age 6-17y (mean 11yrs) | Use of ICS and
LABA | OCS course or
urgent care during
24w study | x/n (%) | Exacerbators: 71/
110 (66%) vs Non-
Exacerbators:
100/185 (54%) | P=0.04 | No use of ICS/LABA | | | | |---------------------------|---|----------------------------------|--|---------|--|---------|--|-----------------------|------|--| | Cross-
sectional, 2/10 | US/Puerto Rico,
n=804, White and
Hispanic children,
Age 7-15y: mean
age 10.6y (SD2.5) | Use of ICS | ED visits | x/n (%) | Frequent ED use:
66/255 (26%)
vs Infrequent ED
use: 170/549
(31%) | P>0.001 | Frequent ED
visits (2+
in
12m) Infrequent
(0-1 in 12m) | Chi ² test | None | | | | | Use of any controller medication | ED use | x/n (%) | Frequent ED use:
115/255 (45%)
vs Infrequent ED
use: 275/549
(50%) | P>0.001 | Infrequent ED
visit (0-1 in
prev. 12 mo) vs
frequent (2+) | | | | #### Reliever medication use | Study ID
Design,
Quality score | Country, Sample size, Population, Ages | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%CI or significance | Reference
group or
comparator | Analysis
used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |--------------------------------------|---|--|---|-----------------------------------|---|-----------------------|--|---|--|--| | Thomas 2005
Cohort; 8/9 | UK, n=9,522,
General practice,
Age 6-15y (mean
10.6y) | Number of
SABA
prescriptions
during baseline
period (6m) | Hospitalisation
during 12m FU
period | OR | 1.25 | 1.13 to 1.39 | | Logistic
regression | Multivariable (age, gender, OCS, SABA, dose ICS) | | | Schatz 2003
Cohort, 6/9 | US, n=4,197, Age
3-17y (mean age
9.5y (SD 4.1) | SABA use in previous year | Hospitalisation in study year | Mean
(SD)
number of
SABA | Hospitalised: 5.02
(4.58) vs Not
hospitalised: 2.61
(3.08) | P<0.001 | Number of prescriptions | Wilcoxon
rank-sum test | 'All potential predictors' | | | | | SABA use in previous year | Hospitalisation in study year | OR | 1.17 | 1.10 to 1.25 | Continuous variable | Logistic regression | | | | Zeiger 2012
Cohort, 5/9 | US, n=289,
Severe or difficult-
to-treat asthma.
Age 6-12y | Very poor
control (with
SABA use) | Self-reported (at 3,6,12m), OCS course, ED visit, or hospitalisation, | OR | 2.03 | 1.17 to 3.52 | Reference Not
very poor
control | Multivariable
logistic
regression | Age groups | Control classified according to NHLBI | | Lieu 1997
Case-control,
7/9 | US, n=1,498
(508 cases, 990
controls),
Age ≤14y | Number of
SABA
prescriptions in
past 6m | Hospitalisation | OR | 1.31 | 1.14 to 1.52 | Odds/increase
in number of
SABA
prescriptions | Multivariate
logistic
regression | Income, SABA
prescriptions,
education status
previous ED visits,
ICS prescriptions | | | Rust 2013 | | | ED visit | OR | 1.04 | 0.98 to 1.10 | | | | | | Cross-sectional
9/10 | US, n=43,156,
Medicaid
registered,
Age 5-12y | Severe asthma
(≥2 SABA in the
preceding 90d) | Hospitalisation | OR | 1.04 | 0.90 to 1.20 | Reference: Not
severe asthma
(<2 SABA in
preceding 90d) | Logistic regression | Age, gender, race,
rural/urban, state,
asthma severity,
doctor visits, ICS
adherence | | |---|---|--|--|--|--|--|---|------------------------|--|--| | Vernacchio
2013
Cross-
sectional, 9/10 | US, n=1,562 (in 3
separate year
cohorts),
Persistent
asthma,
Age 5-17y | ≥4 SABA prescriptions/y 3 SABA prescriptions/y <3 SABA prescriptions/y | Hospitalisation, ED visit or OCS course Hospitalisation, ED visit or OCS course Hospitalisation, ED visit or OCS | RR (2008)
RR (2009)
RR (2010)
RR (2008)
RR (2009)
RR (2010)
RR (2008)
RR (2009) | 1.94
2.05
1.49
0.99
1.41
1.54
0.83
0.97 | 1.33 to 2.84
1.34 to 3.12
0.93 to 2.38
0.62 to 1.58
0.89 to 2.23
0.98 to 2.41
0.46 to 1.47
0.54 to 1.75 | Reference
group: ≤1
SABA/ye
Reference
group: ≤1
SABA/y
Reference
group: ≤1 | Logistic
regression | Age, gender | [No data for> 3
SABA/yr] | | Quezada 2016 Cross- sectional, 6/10 | US, n=200. Non-
exacerbators: 185
Exacerbators:110
Age 6-17y (mean
11y) | Users of SABA
>2/w | ourse OCS use or urgent care during 24w study | RR (2010)
x/n (%) | 1.62
Exacerbators:
71/110 (65%) vs
Non-exacerbators:
148/185 (80%) | 0.99 to 2.65
P<0.01 | SABA/y | Fisher test | None | Recruited to a trial
of proton-pump
inhibitors for
asthma | #### Nebuliser use | Study ID
Design,
Quality score | Country, Sample size, Population, Ages | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%CI or significance | Reference
group or
comparator | Analysis
used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |--------------------------------------|---|---|--------------------------------|-------------------|--|-----------------------|--|--|--|--| | Lieu 1997 Case-control, 7/9 | US, n=1498
(508 cases, 990
controls),
Age ≤14y | Child had a
nebuliser | Hospitalisation | OR | 2.96 | 1.41 to 6.23 | Reference
group: no
nebuliser | Multivariate
logistic
regression | Income, SABA use, education status previous ED visits, ICS prescriptions | Confounding by severity | | Butz 2000
Cross- | US, n=686, Inner city and 99% African American, | Nebuliser use for relief of acute severe symptoms | Hospitalised in last 6 months: | x/N (%) | Users 60/231 (26%)
vs non users 41/455
(9.0%) | P=0.001 | Nebuliser users
(≥1d/m during
last 6m) | Chi ² test | None | Confounding by severity | | sectional, 4/10 | Age 5-12yrs | | ED visit ever | x/N (%) | Users 171/231 (74%)
vs non users 238/455
(52%) | P=0.001 | vs
Non-nebuliser
users | | | | | | | | OCS courses in last 12m | Mean
(SD) | Users 3.8 (SD 9.4) vs
non users 1.3 (6.0) | P<0.001 | | | | | #### Parental beliefs about medication | Study ID | Country, Sample | Risk factor | Exacerbation | Effect | Effect measure | 95%Cl or | Reference | Analysis | Adjustments or | Comments | |-----------------|--------------------|----------------|---------------------|---------|---------------------|--------------|------------|----------|----------------|--------------------| | Design, | size, Population, | definition | definition | measure | value | significance | group or | used | variables | [Reviewers' | | Quality score | Ages | | | | | | comparator | | | interpretation] | | Canino 2012 | US/Puerto Rico, | Parental | Infrequent ED visit | Mean | Frequent ED users: | P<0.001 | Unclear | t-test | None | [Unclear results – | | | n=804, White and | concerns about | (0-1 in previous | score | 3.1 (SD 0.8) | | | | | BMQ has a scale | | Cross- | Hispanic children, | medications | 12m) vs frequent | (SD) | vs infrequent ED | | | | | of 4-20 except | | sectional, 2/10 | Age 7-15y: mean | (BMQ score | (2+) | | users: 2.8 (SD 0.8) | | | | | necessity- | | | age 10.6y (SD2.5) | range 5-25) | | | | | | | | concerns ratio | | | | | | | | | | | | (single figures)] | ### Ownership of written asthma management plan | Study ID | Country, Sample | Risk factor | Exacerbation | Effect | Effect measure | 95%Cl or | Reference | Analysis | Adjustments or | Comments | |-----------------|--------------------|----------------|-------------------|---------|----------------|--------------|-------------------|--------------|---------------------|------------------| | Design, | size, Population, | definition | definition | measure | value | significance | group or | used | variables | [Reviewers' | | Quality score | Ages | | | | | | comparator | | | interpretation] | | Lieu 1997 | US, n=1498 | Had a written | Hospitalisation | OR | 0.54 | 0.30 to 0.99 | Reference | Multivariate | Income, SABA | | | | (508 cases, 990 | asthma action | ED visit | | 0.45 | 0.27 to 0.76 | group: no written | logistic | prescriptions, | | | Case-control, | controls), | plan | | | | | asthma | regression | education status | | | 7/9 | Age ≤14y | | | | | | management | | previous ED visits, | | | | | | | | | | plan | | ICS prescriptions | | | Sunshine 2011 | US, n=292, Low | Written action | Urgent healthcare | OR | 1.98 | 1.13 to 3.48 | Reference | Logistic | Ethnicity, primary | Healthy Homes II | | Cross-sectional | income, persistent | plan ownership | services for | | | | group: non- | regression | language, poverty, | RCT | | 7/10 | asthma, | at baseline | asthma within | | | | ownership of | | severity, prior | Confounded by | | | Age 3-13y | | previous 3m | | | | action plan | | asthma education. | indication | # Allergy/atopy ### Co-morbid atopic disease (Asthma, allergic rhinitis,
eczema, and food allergy) | Study ID
Design,
Quality score | Country, Sample size, Population, Ages | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%CI or significance | Reference
group or
comparator | Analysis
used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |--------------------------------------|---|-------------------------------|--|-------------------|--|-----------------------|---|-----------------------|----------------------------------|--| | Thomas 2005 | UK, n=9,522,
General practice, | Co-morbid allergic rhinitis | Hospitalisation | OR | 2.34 | 1.41 to 3.91 | Reference: asthma only | Logistic regression | Multivariable (age, gender, OCS, | | | Cohort, 8/9 | Age 6-15y (mean 10.6y) | | GP visits | Mean
(SD) | Allergic rhinitis +
asthma 4.4 (4.2) vs
asthma 3.4 (3.2) | P<0.0001 | Asthma alone | | SABA, dose ICS) | | | Engelkes 2016 Cohort, 7/9 | Netherlands,
n=14,303,
Routine GP | Eczema | Hospitalisation,
ED visit, or OCS
course | RR | 0.76 | 0.42 to 1.36 | Reference
group: no
eczema | Poisson
regression | Age, age ² , gender | [Model 1] | | | records,
Age 5-18y | Allergic rhinitis | Hospitalisation,
ED visit, or OCS
course | RR | 0.75 | 0.47 to 1.21 | Reference
group: no
allergic rhinitis | | | | | | | Conjunctivitis | Hospitalisation,
ED visit, or OCS
course | RR | 1.36 | 0.70 to 2.65 | Reference: no conjunctivitis | | | | | Arabkhazaeli | Netherlands, | No allergic | OCS use | OR | 0.5 | 0.2 to 1.2 | Ref group: | Multivariate | Age, gender | | | 2015 | n=703, Regular | history | ED visit | OR | 0.5 | 0.2 to 1.3 | entire study | analysis | | | | | users of asthma | Eczema | OCS use | OR | 3.0 | 1.4 to 6.6 | population | | | | | Cross- | treatments, | Eczema | ED visit | OR | 2.7 | 1.2 to 6.0 | | | | | | sectional, 7/10 | Age 4-12y | Hay fever (AR) | OCS use | OR | 1.4 | 1.2 to 4.4 | | | | | | | | Hay fever (AR) | ED visit | OR | 1.1 | 0.9 to 3.4 | | | | | | | | Eczema + AR | OCS use | OR | 1.8 | 1.2 to 4.4 | | | | | | | | Eczema + AR | ED visit | OR | 1.4 | 0.9 to 3.4 | | | | | | | | ≥2 allergies | OCS use | OR | 3.3 | 1.6 to 6.6 | | | | | | | | ≥2 allergies | ED visit | OR | 2.3 | 1.2 to 4.6 | | | | | | | | Food allergy | OCS use | OR | 2.3 | 1.2 to 4.4 | | | | | | | | Food allergy | ED visit | OR | 1.8 | 0.9 to 3.4 | | | | | | | | Food allergy + eczema | OCS use | OR | 3.3 | 1.8 to 6.1 | | | | | | | | Food allergy + eczema | ED visit | OR | 2.5 | 0.9 to 3.4 | | | | | | | | Food allergy + | OCS use | OR | 1.6 | 0.9 to 3.0 | | | | | | | | hay fever | ED visit | OR | 1.2 | 0.6 to 2.5 | | | | | | | | Food allergy +
AR + eczema | OCS use | OR | 1.9 | 1.0 to 3.6 | | | | | | | | Food allergy +
AR + eczema | ED visit | OR | 1.5 | 0.7 to 2.9 | | | | | | Friedlander
2013 | US, n=300,
Inner city, | Any food allergy | Unscheduled care (previous 12m) | OR | 0.77 | 0.42 to 1.40 | Reference group NR: | Stepwise logistic | Age, race, gender, yearly household | Multiple allergies were from 2+ | |--|--|--|-----------------------------------|---------|--|--------------|---|------------------------|--|------------------------------------| | Cross- | Age 5-13y (mean 7.9y) | | Hospitalisation in (previous 12m) | OR | 1.91 | 0.68 to 5.38 | assume no food allergy | regression | income, tobacco smoke exposure, | distinct food groups | | sectional, 7/10 | | Multiple food allergies | Unscheduled care (previous 12m) | OR | 0.76 | 0.35 to 1.64 | Reference group NR: | | eczema history | | | | | Multiple food allergies | Hospitalisation in (previous 12m) | OR | 3.52 | 1.12 to11.03 | assume no food allergy | | | | | Lasmar 2007
Cross-
sectional, 7/10 | Brazil, n=126,
Persistent
asthma,
Age 3-17y | Presence of allergic rhinitis | Emergency care services | OR | 2.98 | 1.10 to 8.06 | Reference
group: no
allergic rhinitis | Logistic
regression | Age range, asthma severity classification, number of exacerbations | Reference group assumed not stated | | Pinto-Pereira
2010
Cross-
sectional, 6/10 | Trinidad, n=393,
Age 2-17y | Co-morbid
allergic rhinitis
(AR) | ED visits in previous 12m | x/n (%) | Asthma + AR
154/212 (59%) vs
asthma 109/181
(41%) | P<0.01 | Chi ² test | None | None | | | | | | | Mean | Asthma + AR 1.75
visits vs asthma
1.36 visits | P<0.04 | ANOVA | | | | ### Skin prick test (SPT) | Study ID | Country, Sample | Risk factor | Exacerbation | Effect | Effect measure | 95%Cl or | Reference | Analysis | Adjustments or | Comments | |-----------------|-------------------|------------------|---------------------|----------|----------------|--------------|------------------|--------------|-----------------------------|-----------------| | Design, | size, Population, | definition | definition | measure | value | significance | group or | used | variables | [Reviewers' | | Quality score | Ages | | | | | | comparator | | | interpretation] | | Wu 2011 | US, n=1019, | Number of | OCS use, ED visit | ß: | -0.019 | -0.046 to | OR not given | Multivariate | Age, FEV ₁ /FVC, | CAMP study | | | Children, | positive skin | or hospitalisation | estimate | | 0.007 | | modelling | PC20, eosinophils, | | | Cohort, 6/9 | Age 5-12y | prick tests | | | | | | (using GEE) | use of ICS | | | Blatter 2016 | Puerto Rico, | Number of | At least one ED | OR | 1.0 | 0.9 to 1.0 | Change OR per | Stepwise | Sex and age | | | | n=304, Urban | positive SPTs to | visit or OCS use in | | | | each positive | multivariate | | | | Case-control, | population, | allergens | previous year | | | | SPT to allergens | | | | | 7/9 | Age 6-14y | | | | | | | | | | | Sarpong 1997 | US, n=138, Urban | Positive SPT to | Hospitalisation | OR | 2.18 | 1.10 to 4.32 | Ref: negative | Univariate | Multivariable (age, | | | | area, | cockroach | | | | | SPT cockroach | log | sex, race, area of | | | Cross-sectional | Mean age 10.1y | Positive SPT to | Hospitalisation | OR | 0.86 | 0.44 to 1.68 | Ref: negative | regression | residence, medical | | | 8/10 | (SD 2.9) | dust mite | · | | | | SPT to dust mite | | insurance) | | | | | Positive SPT to | Hospitalisation | OR | 1.66 | 0.65 to 4.22 | Ref: negative |] | , | | | | | dog | | | | | SPT to dog | | | | | | | Positive SPT to | Hospitalisation | OR | 2.86 | 1.29 to 4.29 | Ref: negative | 1 | | | | | | cat | • | | | | SPT to cat | | | | | | | Positive SPT to cat | Hospitalisation | OR | 3.77 | 1.53 to 9.25 | Ref: negative
SPT to cat | Stepwise
multiple
logistic
regression | Age, sex, race,
area of residence,
and type of
medical insurance | | |-----------------------------------|----------------------------|------------------------------|-----------------|----|------|--------------|-----------------------------|--|---|---------------------| | Castro-
Rodriguez | Chile, n=237,
Age 4-14y | Positive SPT to ≥1 allergens | ED visits | OR | 0.85 | 0.42 to 1.74 | Reference group: no | Multivariate analysis | Age, dermatitis, passive smokers | 39 allergens tested | | 2007
Cross-
sectional, 7/10 | 7.95 , | Positive SPT to ≥1 allergens | OCS course | OR | 2.58 | 1.11 to 5.97 | positive SPT | analy or o | age of onset,
pneumonia, nasal
eosinophilia | | ### Animals/allergen in home | Study ID
Design,
Quality score | Country, Sample size, Population, Ages | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%CI or significance | Reference
group or
comparator | Analysis
used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |--------------------------------------|---|--|---------------------------|-------------------|--|--|---|---|--|---| | Pongracic
2008 | US, n=937,
Moderate/ severe
asthma, inner city, | Mouse allergen in home and positive SPT | Hospitalisation | RR | 1.65 | 1.09 to 2.50 | No mouse
allergen in home
and/or not | Poisson
regression
model | Cockroach
sensitivity and
exposure | Data from trial of rodent environmental | | Cohort, 7/9 | Age 5-11y | Mouse allergen in home and positive SPT | Unscheduled asthma visits | RR | 1.05 | 0.88 to 1.27 | positive SPT | | | intervention | | Pongracic
2010 | US, n=937,
Moderate to
severe asthma, | Airborne fungal level | Hospitalisation | Mean
(SD) | Positive SPT: 0.2
(0.02) vs Negative
SPT: 0.2 (0.02) | P=0.46 | Positive vs
negative SPT to
fungal allergens | Linear
mixed-effects
Regression | Number of positive responses to SPTs to indoor allergens | | | Cohort, 7/9 | inner city,
Age 5-11y | | Unscheduled asthma visits | | Positive SPT: 0.9
SD 0.1 vs Negative
SPT: 0.9 SD 0.1 | P=0.73 | | Model | | | | | | Concentration of indoor fungal allergens | Unscheduled asthma visits | OR | 1.22 | 1.05 to 1.43 | Ten-fold
increase in concentration | Generalized
linear mixed-
effects model | Outdoor fungal
allergens | Sub-group
analysis: children
with positive SPT
to fungal allergens | | Torjusen 2013 | US, n=150,
Urban;, persistent | Exposed and sensitised to | Unscheduled asthma care | OR | Bed 1.87
Bedroom 1.26 | 1.21 to 2.88
0.91 to 1.73 | Odds for each 10-fold increase | GEE | Age, gender, total IgE, health | | | Cohort, 5/9 | asthma, Age 5-
17y (median 11y) | mouse allergen | astillia care | | Kitchen 1.37
Air 1.43 | 1.05 to 1.78
1.01 to 2.02 | in exposure to mouse allergen. | | insurance | | | | | Exposed but not sensitised to mouse allergen | Unscheduled asthma care | OR | Bed 1.08
Bedroom 1.07
Kitchen 1.11
Air 1.20 | 0.71 to 1.64
0.80 to 1.45
0.85 to 1.46
0.84 to 1.73 | Odds for each 10-fold increase in exposure to mouse allergen. | | | | | Rabito 2011 | US, n=86,
Inner city,
Age 4-17y | Cockroach
allergen
exposure>2U/g | Hospitalisation | OR | 5.41 | 1.14 to 25.62 | Reference: not exposed | Multivariable logistic regression | Income, insurance status, education, | | | Cross-
sectional, 7/10 | | | | | | | | ETS, severity, and adherence | | |---------------------------|--------------------------------------|--------------|--------------------------------|----|------|--------------|----------------------------|---|-----------------------------------| | Dales 2002 | Canada, n=2,986
Children from 136 | Cats in home | ED visit or
Hospitalisation | OR | 0.90 | 0.71 to 1.14 | Reference: no cats in home | Weighted for each student based on | Statistical adjustment for | | Cross-
sectional, 7/10 | schools,
(5-19yrs) | Dogs in home | ED visit or
Hospitalisation | OR | 0.64 | 0.51 to 0.80 | Reference: no dogs in home | probability of the
school being
sampled and
response rates | design effects
(including ICC) | ## Serum IgE | Study ID | Country, Sample | Risk factor | Exacerbation | Effect measure | Effect measure | 95%CI or | Reference | Analysis used | Adjustments | Comments | |---------------|--------------------|-----------------------------|-----------------|----------------|----------------|---------------|----------------|-------------------|-----------------|-------------------| | Design, | size, Population, | definition | definition | | value | significance | group or | | or | [Reviewers' | | Quality score | Ages | | | | | | comparator | | variables | interpretation] | | Wu 2011 | US, n=1019, | Log ₁₀ IgE count | OCS use, ED | ß: regression | 0.083 | -0.11 to 0.27 | | Multivariate | Age, Use of | CAMP study | | | children | | visit or | coefficient | | | | modelling (using | ICS FEV1/FVC | Authors give raw | | Cohort, 6/9 | Age 5-12y | | hospitalisation | | | | | GEE) | ratio, PC20, | beta value as the | | | | | | | | | | | eosinophils | effect measure. | | Forno 2010 | Costa Rica, n=465, | Positive total | Hospitalisation | OR | 1.5 | 1.03 to 2.3 | Reference: | Multivariate | Age, sex, | [Data from 'Model | | Cross- | Age 6-14y | serum IgE level, | or 2+ ED/UC | | | | Negative total | stepwise logistic | parental | 1"] | | sectional; | | IU/mL | visits in | | | | IgE level | regression | education level | [Unadjusted data] | | 7/10 | | | previous year | | | | | | | | ### FeNO | Study ID
Design,
Quality score | Country, Sample
size, Population,
Ages | Risk factor definition | Exacerbation definition | Effect measure | Effect measure value | 95%CI or significance | Reference
group or
comparator | Analysis used | Adjustments
or
variables | Comments
[Reviewers'
interpretation] | |--------------------------------------|---|----------------------------|--|-------------------------------|----------------------|-----------------------|--|---|--|--| | Robroeks
2012
Cohort, 9/9 | The Netherlands,
n=38, Children
with severe
asthma,
Age 6-16y: (mean
10.7y (SD 0.4)) | FeNO assessed
every 2 m | Severe
(reduced FEV ₁ ,
needing OCS,
admitted)
Moderate
(symptoms but
no OCS) | ß correlation
coefficient, | ß= 0.01 (SE: 0.01) | P= 0.60 | | Univariate Cox
regression
analysis of the
time until
exacerbation | Multivariable
(lung function,
control, FeNO) | Intensively monitored cohort. | | McCormak
2013 | US, n=150,
Persistent asthma
with exacerbation | FeNO at 3 monthly visits | ED visit in 3m following study visit | OR | 1.09 | 0.86 to 1.37 | OR for every twofold incr. in FeNO level | Logistic regression with GEE | Age, sex,
FEV ₁ /FVC | | | Cohort, 6/9 | in previous 12m,
Age 5-17y (mean
11y) | | Hospitalisation in 3m following study visit | OR | 1.74 | 0.77 to 3.91 | | | | | | | | | Acute care in
3m following
study visit | OR | 1.08 | 0.88 to 1.31 | | | | | |-------------------------------------|-------------------------------------|---------------------|--|--------------|--|--------------|--------------|---------|------|--| | Kelso-Visser
2011
Cohort, 4/9 | Netherlands,
n=103,
Age 6-16y | FeNO at
baseline | OCS course in
next 12m | Median (!QR) | Exacerbators
41ppb (33-71) vs
Non-exacerbators
13ppb (9-21) | P<0.001 | OR not given | unclear | none | Significant difference in medians, but 'complete overlap of FeNO measurements in the two groups' | #### FH atopy | Study ID
Design,
Quality score | Country, Sample
size, Population,
Ages | Risk factor definition | Exacerbation definition | Effect measure | Effect measure value | 95%CI or significance | Reference
group or
comparator | Analysis used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |--------------------------------------|--|------------------------|---|---|--|-----------------------|---|--|--|--| | Wu 2011 Cohort, 6/9 | US, n=1019,
Children,
Age 5-12y | FH asthma | OCS use, ED visit or hospitalisation | ß: estimate | 0.18 | -0.03 to 0.40 | | Multivariate
modelling (using
GEE) | Age, use of ICS, PC20, FEV ₁ /FVC, eosinophils | CAMP study | | Forno 2010 Cross-sectional, | Costa Rica, n=465,
Age 6-14y | Maternal asthma | Hospitalisation,
ED or urgent
care visits in
previous year | x/n (%) of
children with risk | Exacerbators
104/324 (32%) vs
Non-exacerbators
35/141 (25%) | NS | Comparison
exacerbators
vs non-
exacerbators | Fisher exact tests for categorical variables | Age, sex, lung
function,
SABA, specific
IgE, parental | CAMP validation:
21% vs 22% | | 7/10 | | Maternal hay-
fever | | | Exacerbators
87/324 (27%) vs
Non-exacerbators
49/141 (35%) | NS | Puerto-Rican
exploratory
cohort | | education | CAMP validation:
40% vs 39% | | | | Maternal
eczema | | | Exacerbators
13/324 (4%) vs
Non-exacerbators
13/141 (9%) | P<0.05 | | | | Not available from CAMP | | | | Paternal asthma | Hospitalisation,
ED or urgent
care visits in
previous year | Comparison
exacerbators vs
non-
exacerbators | Exacerbators
78/324 (24%) vs
Non-exacerbators
24/141 (17%) | NS | | | | CAMP validation:
25% vs 26% | | | | Paternal hay-
fever | | | Exacerbators
87/324 (27%) vs
Non-exacerbators
24/141 (17%) | P<0.05 | | | | CAMP validation:
49% vs 47% | | | | Paternal eczema | | | Exacerbators
16/324 (5%) vs | NS | | | | Not available from CAMP | | | | | Non-exacerbators
1/141 (1%) | | | | | | |-------------------------------|---|----|--------------------------------|-------------|--|--------------------|--|---| | Paternal history of hay fever | Hospitalisation,
ED or urgent
care visits in
previous year | OR | 1.9 | 1.02 to 3.7 | Reference: no
paternal
history of hay
fever | analysis: stepwise | Age, sex,
parental
education level | [Model 1]
Validation in
CAMP study data | ### Social context Poverty | Study ID
Design,
Quality score | Country, Sample size, Population, Ages | Risk factor definition | Exacerbation definition | Effect measure | Effect measure value | 95%Cl or significance | Reference
group or
comparator | Analysis used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |--|--|--|---|----------------|--|------------------------------|---
--|--|---| | Schatz 2003
Cohort, 6/9 | US, n=4,197,
Age 3-17y (mean
age 9.5y (SD 4.1) | Family income | Hospitalisation in study year | Mean \$ (SD) | Hospitalised:
\$31,438 (10,205)
vs Not
hospitalised:
\$34,733 (10,716) | P<0.05 | | Wilcoxon rank
sum test | 'All potential predictors' | | | Lieu 1997 Case-control, 7/9 | US, n=1498
(508 cases, 990
controls),
Age ≤14y | Annual income | Hospitalisation | OR | 0.82 | 0.69 to 0.98 | Odds/
\$10,000 unit
increase in
income | Multivariate
logistic
regression | Income, ED
visits, ICS
SABA,
prescriptions,
education, | | | Blatter 2016 Case-control, 7/9 | Puerto Rico,
n=304, Urban
population
Age 6-14y | Household income (income below \$15,000) | At least one ED visit or OCS course in previous year | OR | 0.7 | 0.4 to 1.4 | Reference
group:
income
≥\$15,000 | Stepwise
multivariate | Sex and age | | | Rosas-
Salazar 2013
Cross-
sectional,
9/10 | Puerto Rico,
n=351, Urban
families,
Age 6-14y | Household income <\$15,000/y | At least one ED
or urgent care
visit in past
year | OR | 2.3 | 1.4 to 3.8 | Reference
group:
income
≥\$15,000/y | Multivariate
stepwise logistic
regression | Age, sex,
income, use of
ICS, ETS
exposure | | | Brehm 2012
Cross-
sectional,
9/10 | Puerto Rico,
n=287, Children
from San Juan,
Age 6-14y | Household income <\$15,000/y | At least one ED or urgent visit, OCS course, hospitalisation, | OR | 1.3 | 0.7 to 2.4 | Reference
group:
income above
\$15,000/y | Stepwise
multivariate | Age, sex, vit D
level, use of
ICS, African
ancestry, | | | Dales 2002
Cross- | Canada, n= 2986,
Children from
schools, | Annual family income: <\$20,000 | Hospitalisation | OR | 1.75 | 1.19 to 2.59 | Reference
group:
>\$60,000 | Weighting based on probability of the school being | None | Statistical adjustment for design effects | | sectional,
7/10 | Age 5-19yrs | Annual family income: \$20,000-60,000 | Hospitalisation | OR | 1.27 | 0.98 to 1.63 | Reference
group:
>\$60,000 | sampled and response rates | | (including ICC) | | Stingone
2006a
Cross- | US, n=530, Inner city minority population, | <\$20,000/y
\$20.000 - | ED visit or
hospitalisation
in previous 12m | OR
OR | 2.79 | 1.28 to 6.06
1.27 to 5.92 | Reference
group:
≥\$40,000 | Multivariate logistic regression | Sex, income,
ethnicity, usual
care, delaying | Poverty associate with increased use of ED/ | | sectional 7/10 Wood 2002 | Age 5-12y US, n=386, | \$39,999/y
Denied = had | Parental | Incident Rate | 1.41 (SE 0.13) | P<0.001 | Reference: | Logistic | care, insurance Age, sex, | hospitals Denied welfare | | | Deprived population, | applied but been denied benefits | reported
attacks | Ratio (SE) | , , | | no contact
with welfare | regression | | with increased | | Cross-
sectional,
5/10 | (age 2-12yrs) Classified by | Pending = application for benefits pending | requiring
medical
attention | | 0.94 (SE 0.10) | P=0.57 | Reference:
no contact
with welfare | | parent
education,
quality of care | use of healthcare resources | |------------------------------|--|---|-----------------------------------|--|---|---------|---|-----------------------|---|-----------------------------| | 6,10 | welfare status
Never 44%
Denied 9% | Former = benefits in the past, | | | 0.95 (SE 0.07) | P=0.48 | Reference:
no contact
with welfare | | quanty or care | | | | Pending 9%
Former 25%
Current 14% | Current = receiving benefits | | | 1.03 (SE 0.10) | P=0.76 | Reference:
no contact
with welfare | | | | | Cross-sectional, | US/Puerto Rico,
n=804, White and
Hispanic children,
Age 7-15y: mean | % below poverty
threshold
(derived income-
to-needs ratio: | ED visit | % comparison
(p-value sig. @
P<0.001) | Frequent ED use:
64%
vs
Infrequent ED use: | P<0.001 | *Infrequent
ED visit (0-1
in prev. 12
months) vs | Chi ² test | None | | | 2/10 | age 10.6y (SD2.5) | annual income/
poverty
threshold for
family size) | | | 49%
Sig | | frequent (2+) | | | | | | | Neighbourhood
risk Index
assessing
poverty factors
(score from 0-8- | ED visit | Mean score
comparison (p-
value sig. @
P<0.001) | Freq ED use: 6.1
SD 2.0
vs
Infreq ED use: 24.8
SD 2.8 | P<0.001 | Infrequent ED
visit (0-1 in
prev. 12
months) vs
frequent (2+) | t-test | | | | | | 8 highest risk) | | | | | . , , | | | | ### Low parent education level | Study ID
Design,
Quality score | Country, Sample size, Population, Ages | Risk factor definition | Exacerbation definition | Effect measure | Effect measure value | 95%Cl or significance | Reference
group or
comparator | Analysis used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |--------------------------------------|---|---------------------------------------|-----------------------------|----------------|----------------------|-----------------------|--|--|---|--| | Lieu 1997 Case-control, 7/9 | US, n=1498
(508 cases, 990
controls),
Age ≤14y | Father's education level | ED visit | OR | 0.55 | 0.36 to 0.84 | Odds/unit
increase in
education
level | Multivariate
logistic
regression | Income, SABA prescriptions, education status, Previous ED visits, ICS prescriptions | | | Quinto 2011
Cross- | US, n=32,321,
Privately insured,
Age 5-17y | Parental
education: High
School | OCS use | OR | 0.97 | 0.90 to 1.06 | Reference:
Parental
education | Logistic regression | Age, sex, race, parent education, controller use, | | | sectional,
10/10 | | Parental education: High School | Hospitalisation or ED visit | OR | 1.08 | 1.00 to1.17 | >High School diploma | | GORD, diabetes | | | Rosas- | Puerto Rico, | Low parental | At least one ED | OR | 1.7 | 1.03 to 2.7 | Reference: | Multivariate | Age, sex, income, | ANQ = Asthma | |--------------|-------------------|-----------------|-----------------|----|------|--------------|-------------|--------------------|-------------------|-----------------| | Salazar 2013 | n=351, Urban | asthma | or urgent care | | | | one or more | stepwise logistic | use of ICS, ETS | numeracy | | Cross- | families, | numeracy: no | visit in past | | | | correct ANQ | regression | exposure | questionnaire | | sectional, | Age 6-14y | correct answers | 12m | | | | answers | | | (math-based | | 9/10 | | in ANQ | | | | | | | | questions) | | Dales 2002 | Canada, n=2,986 | Parental | Hospitalisation | OR | 1.85 | 1.21 to 2.82 | Reference | Outcomes | None | Statistical | | | Children from 136 | education: Not | | | | | group: | weighted for | | adjustment for | | Cross- | schools, | completed | | | | | university | each student | | design effects | | sectional, | (5-19yrs) | secondary | | | | | degree | based on | | (including ICC) | | 7/10 | | Secondary | Hospitalisation | OR | 1.40 | 1.05 to 1.88 | Reference | probability of the | | | | | | school | | | | | group: | school being | | | | | | completed | | | | | university | sampled and | | | | | | | | | | | degree | response rates | | | ### **Ethnicity** | Study ID
Design,
Quality score | Country, Sample size, Population, Ages | Risk factor definition | Exacerbation definition | Effect measure | Effect measure value | 95%CI or significance | Reference
group or
comparator | Analysis used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |--------------------------------------|--|--------------------------------|---|----------------|----------------------|-----------------------|-------------------------------------|---------------------|---|--| | Baltrus 2017 | US ,n=615,432, | Black | ED visit | OR | 1.97 | 1.93 to 2.00 | Reference | Individual | Sex, race, long- | | | | Children on | Hispanic | | | 1.05 | 1.03 to 1.08 | group: white | logistic | term controller | | | Cohort, 9/9 | Medicaid from 28 | Asian | | | 0.73 | 0.68 to 0.78 | | regression | medication ratio | | | | states, | Other | | | 1.42 | 1.39 to 1.45 | | | | | | Stewart 2010 | US, n=25,138,
Children of military | Hispanic | Asthma related hospitalisation | OR | 1.38 | 1.02 to 1.87 | Reference group: White | Logistic regression | Sex, parent's marital status, | African American at greater risk | | Cohort study, 8/9 | personnel, Age 5-
10y | | Asthma related ED visit | OR | 1.24 | 1.11 to 1.37 | | | military rank,
siblings, health
care providers
used, geographic
area, asthma and
other drugs | than Hispanic,
and both at | | | | Black | Asthma related hospitalisation | OR | 1.97 | 1.61 to 2.41 | | | | greater risk than white. | | | | | Asthma related ED visit | OR | 1.62 | 1.51 to 1.74 | | | | | | Kwong 2012 | US, n=960,
Inner city children, | Ethnicity- African
American | ED visit or
hospitalisation | OR | 4.12 | 1.8 to 9.5 | Reference group: | Logistic regression | Age, ethnicity, sex, baseline | Hispanic 81%;
AA 8.5% White | | Cohort, 6/9 | Age 2-18y (60%
were 6-11y) | | OCS course,
ED visit or
hospitalisation | OR | 2.03 | 1.1 to 3.9 | Hispanic | | asthma control,
clustering effect of
site of care | 2.4%
Other 7.8% | | | | Ethnicity-White | ED visit or hospitalisation | OR | 1.86 | 0.5 to 6.8 | Reference group: | | | African American at greater risk | | | | | OCS course,
ED visit or
hospitalisation | OR | 1.85 | 0.8 to 4.1 | Hispanic | | | than Hispanic | | | | Ethnicity-Other | ED visit or hospitalisation | OR | 2.25 | 0.9 to 5.4 | Reference group: | | | | |--|---|---------------------------------------|--|----------------------|---|--------------|---------------------------|-------------------------------|---|---| | | | | OCS course,
ED visit or
hospitalisation | OR | 1.80 | 0.9 to 3.4 | Hispanic | | | | | Haselkorn
2009b
Cohort, 8/9 | US, n=563,
Severe/difficult to
treat asthma,
Age 6-11y | Non-white | At least one
OCS course
reported in
12m | OR | 1.76 | 1.34 to 2.32 | Reference
group: White | Stepwise model | Multivariable (age, sex, race, BMI, allergies, ETS, ICS, control) | White 47%;
Black 35%;
Other 18% | | Halterman
2001
Cohort, 5/9 | US, n=165,
From 11 diverse
primary care
settings,
Age 75% 6-12y | Race | OCS course | x/n (%) | White 16/111
(22%) vs Black:
6/39 (24%) vs
Other: 5/15 (46%) | NS | | Chi ² test | None | White (67%) Black (24%) Other (9%) | | Quinto 2011 | US, n=32,321,
Privately insured, | Hispanic | ED visit or hospitalisation | OR | 1.19 | 1.10 to 1.28 | Reference group: non- | Logistic
Regression | Age, sex, race, parent education, | White 21%;
Black 14%; | | Cross-
sectional | Age 5-17y | Hispanic | OCS
dispensed | OR | 0.89 | 0.83 to 0.96 | Hispanic | | controller use,
GORD, diabetes | Hispanic 33% | | 10/10 | | African
American | ED visit or hospitalisation | OR | 1.64 | 1.51 to 1.79 | Reference group: non- | | | | | | | African
American | OCS
dispensed | OR | 0.94 | 0.87 to 1.03 | African
American | | | | | | | other
(white/Asian) | ED visit or hospitalisation | OR | 1.52 | 1.28 to 1.82 | Reference group: non- | | | | | | | other
(white/Asian) | OCS
dispensed | OR | 0.88 | 0.74 to 1.05 | other
(white/Asian) | | | | | Rust 2013 | US, n=43,156,
Medicaid | Ethnicity – Black | ED visit in 90d
after ICS Rx | OR | 1.12 | 1.05 to 1.19 | Reference group: White | Logistic regression | Age, gender, race, rural/urban, | White 36%;
Black 33%; | | Cross-
sectional,
9/10 | registered,
Age 5-12y | | Hospitalisation in 90d after ICS Rx | OR | 1.36 | 1.14 to 1.60 | | | state, asthma
severity, doctor
visits, ICS | Hispanic 30% African American at greater risk | | | | Ethnicity –
Hispanic | ED visit in 90d after ICS Rx | OR | 0.71 | 0.65 to 0.78 | Reference group: White | | adherence | than White;
Hispanic at | | | | Ethnicity –
Hispanic | Hospitalisation in 90d after ICS Rx | OR | 1.01 | 0.80 to 1.29 | | | | similar/less risk
than white | | Brehm 2012
Cross-
sectional,
9/10 | Puerto Rico,
n=287, Children
from San Juan,
Age 6-14y | Each 20% increase in African ancestry | At least one ED or urgent visit, OCS course, hospitalisation | OR | 0.9 | 0.6 to 1.4 | | Stepwise
multivariate | Age, sex, vitamin
D level, use of
ICS, African
ancestry, | | | McCarville
2013 | US, n= 466, Inner city low-income, | Hispanic | Number of hospitalisations | Incidence rate ratio | 0.75 | 0.49 to 1.14 | Reference group: Black, | Multivariable regression with | | White 16%;
Black 58%; | | Cross-
sectional,
8/10 | Age 8-14yrs | White, non-
Hispanic | ED visits,
unscheduled
care in 12m
Number of
hospitalisations
ED visits,
unscheduled
care in 12m | Incidence rate ratio | 0.56 | 0.35 to 0.90 | White, other non-Hispanic Reference group: Black | cotinine as
primary
predictor | Age, sex, race,
BMI, household
income, | Hispanic 26%
African American
at greater risk
than Hispanic or
White | |---|---|--|---|---|---|--|---|---|---|---| | Sarpong
1997
Cross-
sectional,
8/10 | US, n=138, Urban
area, Mean age
10.1y (SD 2.9) | Race – black | Hospitalisation | OR | 3.18 | 1.35 to 7.49 | Reference
group: non-
Black | Stepwise
multiple logistic
regression | Age, sex, area of residence, type of medical insurance | | | Findley 2003 Cross- | US, n=1,615,
Inner-city school-
based, | Ethnicity- Puerto
Rican | Parent reported
ED visit in past
12m | OR | 0.91 | 0.55 to 1.48 | Reference
group: non-
Puerto Rican | Logistic regression | Controlled for
'other risk factors' | | | sectional,
7/10 | Mean age 7.4yrs | | Parent reported hospitalisation in past 12m | OR | 0.98 | 0.56 to1.69 | | | | | | Stingone
2006a
Cross-
sectional,
7/10 | US, n=530, Inner
city minority
population,
Age 5-12y | Dominican Mexican Puerto Rican Other Latino African American Asian Other | Hospitalisation
or ED visit in
previous 12m | OR OR OR OR OR OR OR OR OR | 3.18
4.51
6.16
3.15
2.87
1.73
2.36 | 1.42 to 7.13
0.67 to 29.1
2.47 to 15.4
1.17 to 8.45
1.49 to 5.52
0.85 to 3.54
0.84 to 6.65 | Reference
group: White | Multivariate
logistic
regression | Sex, income,
ethnicity, usual
care, delaying
care, insurance | White 8%;
Black 31%;
Hispanic 44%
African
[Americans,
Hispanic at
greater risk than
White] | | Malhotra
2014
Cross-
sectional,
6/10 | US, n=155,128,
Medicaid,
Age 5-12y | Black-white ratio | ED visit | Median Black-
White ED visit
rate ratio | 2.4 | Unclear
significance | White 26%;
Black 45%;
Hispanic 21% | Quintile cut-offs and rate ratios | Not applicable | African American
at greater risk
than White | | Quezada
2016
Cross-
sectional,
6/10 | US, n=200, Non-
exacerbators: 185
Exacerbators:110
Age 6-17y (mean
11y) | Race
White 43%;
Black 47%;
Other 11% | OCS use or
urgent care
during 24w
study | x/n (%) | Exacerbators: 43% white, 47% black Non-Exacerbators: 37% white, 51% black | P=0.56 | | Fisher test | None | Recruited to a
trial of proton-
pump inhibitors
for asthma | | Wood 2002 Cross-sectional, | US, n=386,
Deprived
population,
(age 2-12yrs) | Black White (non-Hispanic) | Parent reported attack needing medical care | Incident Rate
Ratio (SE) | 0.85 (SE 0.06)
0.54 (SE 0.07) | P=0.02
P<0.001 | Reference:
Hispanic
Reference:
Hispanic | Logistic regression | Age, sex,
parent education,
quality of care | White 27%;
Black 24%;
Hispanic 65% | | 5/10 | Other | | | 1.34 (SE 0.15) | P=0.01 | Reference: | | | |------|-------------------|-----------------|---------------|----------------|---------|---------------|--|--| | | | | | | | Hispanic | | | | | Parental | Parent reported | Incident Rate | 0.55 (SE 0.06) | P<0.001 | Reference: | | | | | birthplace: Other | attack needing | Ratio (SE) | | | US birthplace | | | | | | medical care | | | | - | | | ### Access to healthcare | Study ID
Design,
Quality score | Country, Sample size, Population, Ages | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%CI or significance | Reference
group or
comparator | Analysis used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |---|---|--|---|---------------------------------------|--|-----------------------|--|--|--|--| | Halterman
2001
Cohort, 5/9 | US, n=165,
From 11 diverse
primary care
settings,
Age 75% 6-12y | Medicaid
insurance | % with OCS course | x/n (%) | No Medicaid:
19/119 (26%) vs
Medicaid: 8/46
(24%) | NS | N/A | Chi ² test | None | No Medicaid:
72%
Medicaid: 28%; | | Sarpong
1997
Cross-
sectional,
8/10 | US, n=138, Urban
area, Mean age
10.1y (SD 2.9) | Public aid/
Medicaid/self-
pay | Hospitalisation | OR | 2.34 | 1.12 to 4.92 | Reference
group:
commercial
insurance | Univariate
logistic
regression | Multivariable (age, sex, race, area of
residence, medical insurance) | | | Stingone
2006a
Cross- | US, n=530, Inner city minority population, | Stated source of usual care: 'ED' | Hospitalisation or ED visit in previous 12m | OR | 4.41 | 2.27 to 8.58 | Reference
group:
physicians' | Multivariate
logistic
regression | Sex, income,
ethnicity, usual
care, delaying | | | sectional,
7/10 | Age 5-12y | 'Clinic or health centre' | Hospitalisation or ED visit in previous 12m | OR | 1.24 | 0.814 to 1.90 | office | | care, insurance | | | | | 'Other' or 'no
usual place' | Hospitalisation
or ED visit in
previous 12m | OR | 2.44 | 1.21 to 4.93 | | | | | | | | Insurance and healthcare arrangements: | Hospitalisation
or ED visit in
previous 12m | Excluded from th statistical signific | e final model owing to
ance | lack of | NA | Multivariate
logistic
regression | Sex, income,
ethnicity, usual
care, ICS use,
sleep disturbance, | No insurance,
Medicaid, child
health plus,
private, other | | | | Delaying care | | | | | NA | | delaying care | Delay ever: at least once; never | | Wood 2002
Cross- | US, n=386,
Deprived
population, | Insurance
status:
Intermittent | Parent reported attacks needing medical care | Incident Rate
Ratio (SE) | 1.00 (SE 0.06) | P=0.98 | Reference:
continuously
insured | Logistic regression | Age, sex,
parent education,
quality of care | | | sectional,
5/10 | Age 2-12y | No health insurance during past year | Parent reported attacks needing medical care | Incident Rate
Ratio (SE) | 0.62 (SE 0.11) | P=0.006 | Reference:
continuously
insured | | , | | | | | Barriers to | Parent reported | Incident Rate | 1.08 (SE 0.02) | P<0.001 | For each 1- | Logistic | | | |-------------|-------------------|-------------------|-----------------|---------------|--------------------|---------|----------------|-----------------------|------|-----------------| | | | health care: | attacks needing | Ratio (SE) | | | unit change in | regression | | | | | | | medical care | | | | score | | | | | | | Quality of health | Parent reported | Incident Rate | 1.23 (SE 0.03) | P<0.001 | For each 1- | Logistic | | (5 questions | | | | care score | attacks needing | Ratio (SE) | | | unit change in | regression | | based on asthma | | | | | medical care | | | | score | | | guidelines) | | Canino 2012 | US/Puerto Rico, | Public insurance | Frequency of | x/n (%) | Frequent ED use: | P<0.001 | Frequent (2+) | Chi ² test | None | | | | n=804, White and | | ED visit | | 168/255 (66%) vs | | vs infrequent | | | | | Cross- | Hispanic children | | | | infrequent ED use: | | (0-1) ED visit | | | | | sectional, | Age 7-15y: mean | | | | 280/549 (51%) | | in previous 1y | | | | | 2/10 | age 10.6y (SD2.5) | Lack a usual | Frequency of | x/n (%) | Frequent ED use: | P<0.001 | Frequent (2+) | Chi ² test | None | | | | | source of care | ED visit | | 51/255 (20%) vs | | vs infrequent | | | | | | | for breathing | | | infrequent ED use: | | (0-1) ED visit | | | | | | | problems | | | 44/549 (8%) | | in previous 1y | | | | ## Care, services #### Routine review | Study ID
Design,
Quality score | Country, Sample
size, Population,
Ages | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%CI or significance | Reference
group or
comparator | Analysis used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |--|--|--|---|--|--|--|--|--|--|--| | Engelkes
2016
Cohort, 7/9 | Netherlands,
n=14,303,
Routine GP record,
Age 5-18y | Specialist visit for asthma | Hospitalisation,
ED visit, or OCS
course | RR | 1.66 | 1.33 to 2.07 | Reference
group: No
specialist
visits | Poisson
regression | Age, age ² , gender | [Model 1] | | Vernacchio
2013
Cross-
sectional,
9/10 | US, n=1,562 (in 3
separate year
cohorts),
Persistent asthma,
Age 5-17y | 1 routine office visits No routine office visits | Hospitalisation,
ED visit, or OCS
use | RR for 2008
RR for 2009
RR for 2010
RR for 2008
RR for 2009
RR for 2010 | 0.79
0.53
0.41
0.97
0.51
0.69 | (0.53 to 1.19)
(0.34 to 0.85)
(0.25 to 0.66)
(0.62 to 1.50)
(0.29 to 0.90)
(0.40 to 1.19) | Reference ≥2 visits Reference ≥2 visits | Logistic
regression | Age, gender | [Confounding by severity] | | Forno 2010
Cross-
sectional,
7/10 | Costa Rica, n=465,
Age 6-14y | ≥4 routine
physician visits
in the past year | Hospitalisation,
ED, urgent visits
in previous year | OR | 6.8 | 3.3 to 13.9 | Reference: ≤3
physician
visits | Multivariate:
stepwise logistic
regression | Age, sex, lung
function, SABA,
specific IgE,
parental education | [Model 1]
[Confounding by
severity] | #### Flu vaccination | Study ID | Country, Sample | Risk factor | Exacerbation | Effect | Effect measure | 95%Cl or | Reference | Analysis used | Adjustments or | Comments | |---------------|--------------------|-------------|------------------|-------------|----------------|----------------|---------------|---------------|----------------|-----------------| | Design, | size, Population, | definition | definition | measure | value | significance | group or | | variables | [Reviewers' | | Quality score | Ages | | | | | | comparator | | | interpretation] | | Vernacchio | US, n=1,562 (in 3 | No flu | Hospitalisation, | RR for 2008 | 0.95 | (0.67 to 1.35) | reference flu | Logistic | Age, gender | | | 2013 | separate year | vaccination | ED visit, or OCS | RR for 2009 | 0.83 | (0.57 to 1.21) | vaccination | regression | | | | Cross- | cohorts), | | use | RR for 2010 | 0.87 | (0.59 to 1.28) | | | | | | sectional, | Persistent asthma, | | | | | | | | | | | 9/10 | Age 5-17y | | | | | | | | | | #### Environment ### Environmental tobacco smoke exposure (ETS) | Study ID
Design,
Quality score | Country, Sample size, Population, Ages | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%Cl or significance | Reference
group or
comparator | Analysis used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |--|--|---|---|-------------------------------|----------------------|-----------------------|--|--|---|--| | Rabinovitch
2011
Cohort, 6/9 | US, n=44, School
for children with
moderate/severe
asthma,
Age 6-15y | ETS (parental
report and/or
urine cotinine
level >ln 3.1
ng/mg) | ED or
unscheduled
care visits | RR | 3.6 | 1.1 to 11.5 | Reference
group: not
exposed to
ETS | 2-tailed Fisher exact test | Lung function | [Fewer children
in the ETS
group were
allergic] | | Pyle 2015 Case-control, | US, n=944, Persistent asthma with exacerbation | Cases (n=236):
ETS (parent –
reported | ED visit in past
12m | OR | 1.121 | 0.66 to 1.92 | Controls
(n=708): not
exposed to | Logistic regression | Age and sex matched controls | Controls more likely to have had flu | | 6/9 | in previous 12m,
Age 5-18y; mean | exposure at home) | Hospitalisations in past 12m | OR | 1.81 | 0.43 to 7.63 | ETS | | | vaccination.
Cases had | | | 10.2y | | OCS use in past 12m | OR | 0.91 | 0.59 to 1.39 | | | | greater BMI | | Rosas-
Salazar 2013
Cross-
sectional,
9/10 | Puerto Rico,
n=351, Urban
children,
Age 6-14y | Reported ETS exposure | At least one ED
or urgent care
visit in past year | OR | 0.7 | 0.5 to 1.1 | Reference: no exposure to ETS | Multivariate
stepwise logistic
regression | Age, sex, income, use of ICS, exposure to ETS | | | McCarville
2013
Cross-
sectional, | US, n= 466, Inner
city low-income
Age 8-14yrs | Cotinine level ≥1 (69.3%) | Number of
hospitalisations
ED visits,
unscheduled
care in 12m | Incidence rate ratio, p-value | 1.39, | 1.08 to 1.78 | Cotinine level <1 | Multivariable regression | Age, sex, race,
BMI, household
income, | 50.4%
households
reported ETS;
69.3% of
children had | | 8/10 | | Reported
household
smoking
(50.4%) | Number of
hospitalisations
ED visits,
unscheduled
care in 12m | Incidence rate ratio, p-value | 1.04, NS p-value | 0.83 to 1.31 | No reported
ETS | Multivariable regression | | cotinine levels
≥1 | | Cross-sectional, 7/10 | Canada, n=2,986
children from 136
schools,
(5-19yrs) | Reported regularly exposed to ETS | ED or
Hospitalisation | OR | 1.55 | 1.22 to 1.97 | Reference
group: no
exposure to
ETS | Outcomes weighted for each student based on probability of the school being sampled and response rates | None | Statistical
adjustment for
design effects
(including ICC) | | Chilmonczyk |
US, n= 199, | Parent-reported | Acute | RR | 1.8 | 1.4 to 2.2 | Reference: | Stepwise | Mother age & | [Exacerbation | |-------------|--------------------|-----------------|------------------|---------|--------------------|------------|----------------|-----------------------|-------------------|------------------| | 1993 | Age 8m-13y (mean | exposure to ETS | exacerbations in | | | | highest vs | multivariate | education level, | not defined] | | Cross- | age ~7.5y) | Urine cotinine | previous 12m | | 1.7 | 1.4 to 2.1 | lowest | linear regression | child's age, sex, | | | sectional, | | measurements | | | | | exposure | | and day-care | | | 7/10 | | | | | | | category | | attendance | | | Quezada | US, n=200, | Second hand | OCS use or | x/n (%) | Exacerbators: | P= 0.75 | ETS exposure | Fisher test | None | Recruited to a | | 2016 | Age 6-17y (mean | smoke exposure | urgent care | | 34/110 (31%) vs | | Exacerbators | | | trial of proton- | | Cross- | 11y) | (yes/no) | during 24week | | Non-exacerbators: | | vs Non- | | | pump inhibitors | | sectional, | | | study | | 54/185 (29%) | | exacerbators | | | for asthma | | 6/10 | | | | | | | | | | | | Canino 2012 | US/Puerto Rico, | Reported ETS | ED visit | x/n (%) | Frequent ED use: | P<0.001 | Frequent (2+) | Chi ² test | None | | | | n=804, White and | exposure | | | 97/255 (38%) vs | | vs infrequent | | | | | Cross- | Hispanic children, | | | | infrequent ED use: | | (0-1) ED visit | | | | | sectional, | Age 7-15y: mean | | | | 132/549 (24%) | | in previous 1y | | | | | 2/10 | age 10.6y (SD2.5) | | | | , , | | | | | | #### Rural/Urban residence | Study ID
Design,
Quality score | Country, Sample size, Population, Ages | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%CI or significance | Reference
group or
comparator | Analysis used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |--|---|--|---|-------------------|--|-----------------------|-------------------------------------|--|---------------------------------------|---| | Halterman
2001
Cohort, 5/9 | US, n=165,
from11 diverse
primary care
settings, | Urban rural location | % with steroid courses | Comparison | Urban: 28%
Suburban: 18%
Rural/semi-rural :
25% | NS | N/A | Chi ² test | None | Urban 33%
Suburban 26%
Semi/Rural 26%
Small town 15% | | , | Age 75% 6-12y | | | | Small town: 31% | | | | | | | Blatter 2016 Case-control, 7/9 | Puerto Rico,
n=304, Urban
population
Age 6-14y | Residential proximity to a major road, per every 100 m | At least one ED visit or OCS use in previous year | OR | 1.2 | 1.1 to 1.3 | Incr. odds per
100 m | Stepwise
multivariate | Sex and age | | | Rust 2013 | US, n=43,156, | Small | ED visit | OR | 0.94 | 0.88 to1.00 | Reference | Logistic | Age, gender, race, | | | Cross- | Medicaid registered, | metropolitan area | Hospitalisation | OR | 1.13 | 0.95 to1.33 | group: large
metropolitan | regression | rural/urban, state, asthma severity, | | | sectional, | Age 5-12y | Non- | ED visit | OR | 0.95 | 0.95 to1.33 | area | | doctor visits, ICS | | | 9/10 | | metropolitan
area | Hospitalisation | OR | 1.23 | 0.94 to1.35 | | | adherence | | | Pesek 2010
Cross-
sectional,
8/10 | US, n=12,085,
Majority African
American,
Age 4-17yrs | Geographical location: Rural | Emergency
health care
utilisation | | significant differences i
between the urban and | | Reference:
urban | Multivariate
analysis: logistic
regression | Age, race, sex, and type of insurance | OR for exacerbations not reported | | Sarpong
1997
Cross-
sectional,
8/10 | US, n=138, Urban
area,
Mean age 10.1y
(SD 2.9) | Residence –
urban | Hospitalisation | OR | 1.86 | 0.80 to 4.29 | Reference:
Non-urban
residence | Univariate
logistic
regression | Multivariable (age, sex, race, area of residence, medical insurance) | |---|---|--|-----------------|----|------|--------------|---|--------------------------------------|--| | Brown 2012
Cross-
sectional, | US, n=224,
Recruited from
urban clinic, | Residence <417
metres from
major roadway | ED visit | OR | 1.86 | 0.92 to 3.76 | Reference
group: >417
metres from | Logistic regression | Insurance status,
race, FH asthma,
ETS exposure, | | 7/10 | Age 6-17y, | Residence <417
metres from
major roadway | Hospitalisation | OR | 2.45 | 1.23 to 4.89 | roadway | | GORD | # Demography Age | Study ID
Design,
Quality score | Country, Sample size, Population, Ages | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%CI or significance | Reference
group or
comparator | Analysis used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |---|--|--|---|-----------------------------|---|-----------------------|--|---|---|---| | Baltrus 2017
Cohort, 9/9 | US, n=615,432,
Medicaid children,
N=28 states | Age | ED visit | OR | 0.99 | 0.99 to 0.99 | Reference group: unknown? | Individual logistic regression | Sex, race, long-
term controller
medication ratio | County-level data not applicable | | Schatz 2003
Cohort, 6/9 | US, n=4,197,
Age 3-17y (mean
age 9.5y (SD 4.1) | Age at hospitalisation | Hospitalisation | Mean age in years (SD) | Not hospitalised:
9.52y (4.10) vs
Hospitalised: 7.53y
(3.67) | P<0.001 | NA | Wilcoxon rank
sum test | 'All potential predictors' | | | | | Older age | Hospitalisation in study year | OR | 0.84 | 0.77 to 0.91 | Younger age | Logistic regression | | | | Murray 1997 | US, n=782,
Inner-city, | Age 5-9 | Hospitalisation | RR | 6.09 | 3.90 to 9.51 | Reference
age 30+ | Kaplan-Meier, log-rank test; | Age, duration of treatment | Younger age increases risk of | | Cohort, 6/9 | Age groups 5-9;
10-14 (and to 34y) | Age 10-14 | Hospitalisation | RR | 4.51 | 2.86 to 7.11 | Reference
age 30+ | Cox regression analysis | | an exacerbation | | Sarpong
1997
Cross-
sectional,
8/10 | US, n=138, Urban
area, Mean age
10.1y (SD 2.9) | Age | Hospitalisation in study year | OR | 0.77 | 0.67 to 0.90 | Odds per year | Stepwise
multiple logistic
regression
analysis | Sex, race, area of residence, type of medical insurance | Younger age increases risk of an exacerbation | | Quezada
2016
Cross-
sectional,
6/10 | US, n=200,
Age 6-17y (mean
11y) | Age | OCS use or
urgent care
during 24week
study | Mean age | Exacerbators: age
10.9y vs
Non-exacerbators:
11.6y | P= 0.04 | Mean age of exacerbators vs non-exacerbators | Fisher test | None | Recruited to a
trial of proton-
pump inhibitors
for asthma | | Wood 2002
Cross-
sectional
5/10 | US, n=386,
Deprived
population,
Age 2-12y | Child age: for each 1-unit change in score | Parent reported attacks needing medical care | Incident Rate
Ratio (SE) | 0.95 (SE 0.01) | P=0.001 | | Logistic regression | Age, sex,
parent education,
quality of care | Younger age a risk factor for exacerbation | Age onset of asthma | Study ID
Design,
Quality score | Country, Sample size, Population, Ages | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%CI or significance | Reference
group or
comparator | Analysis used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |--------------------------------------|--|------------------------|-------------------------|-------------------|-------------------------------------|-----------------------|-------------------------------------|---------------|--------------------------|--| | Quezada
2016 | US, n=200,
Age 6-17y (mean
11y) | Age at asthma onset | OCS use or urgent care | Mean age of onset | Exacerbators: age 2.9y (2.4-3.4) vs | P= 0.09 | | Fisher test | None | Recruited to a trial of proton- | | Cross- | | during 24week | Non-Exacerbators: | | | pump inhibitors | |------------|--|---------------|--------------------|--|--|-----------------| | sectional, | | study | age 3.7y (3.2-4.1) | | | for asthma | | 6/10 | | | | | | | ### Longer duration of asthma | Study ID
Design, | Country, Sample size, Population, | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%CI or significance | Reference
group or | Analysis used | Adjustments or variables | Comments
[Reviewers' | |---|---|-----------------------------------|--|------------------------
---|-----------------------|-----------------------|------------------------|--|--| | Quality score Haselkorn 2009b Cohort, 8/9 | US, n=563,
Severe/difficult to
treat asthma,
Age 6-11y | Duration of asthma | At least one
OCS course
reported in 12m | OR | 1.06 | 1.01 to 1.12 | OR per year increase | Stepwise model | Multivariable (age,
sex, race, BMI,
allergies, ETS,
ICS, control) | interpretation] TENOR study | | Bacharier
2003
Cross-
sectional,
8/10 | US, n=1,041,
Mild or moderate
asthma,
Age 5-12y | Duration of asthma | Prior
hospitalisation
(at at any time
during their life). | OR | 1.93 | 1.29 to 2.87 | | Logistic
regression | Clinic, race,
income, and
gender | CAMP study
baseline data.
[Confounding by
duration of
outcome] | | Quezada
2016
Cross-
sectional,
6/10 | US, n=200,
Age 6-17y (mean
11y) | Number of
years with
asthma | OCS use or
urgent care
during 24week
study | Mean duration in years | Exacerbators: 8y
(7.3 to 8.7) vs
Non-Exacerbators:
8y (7.4 to 8.5) | P= 0.98 | | Fisher test | None | Recruited to a trial of proton-pump inhibitors for asthma | ### Gender | Male at increased risk of exacerbation | Female at increased risk of exacerbation | No difference between genders | |--|--|-------------------------------| | | | | | Study ID
Design, | Country, Sample size, Population, | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%CI or significance | Reference group or | Analysis used | Adjustments or variables | Comments
[Reviewers' | |---------------------------------|--|------------------------|--|-------------------|----------------------|-----------------------|--------------------------------|--------------------------------------|---|--| | Quality score | Ages | | | | | | comparator | | | interpretation] | | Baltrus 2017
Cohort, 9/9 | US, n=615,432,
Children on
Medicaid from 28
states | Sex: Male | ED visit | OR | 1.14 | 1.12 to 1.15 | Reference
group: female | Individual
logistic
regression | Sex, race, long-
term controller
medication ratio | County-level
data not
applicable | | Engelkes
2016
Cohort, 7/9 | Netherlands,
n=14,303,
Routine GP record,
Age 5-18y | Gender | Hospitalisation,
ED visit, or OCS
course | RR | 1.02 | 0.69 to 1.50 | Reference
group:
unknown | Poisson
regression | Age, age ² | [Model 1] | | Kwong 2012 | US, n=960,
Inner city children | Gender female | ED visit or hospitalisation | OR | 0.63 | 0.4 to 1.1 | Reference group: male | Logistic regression | Age, ethnicity, sex, baseline asthma | | | Cohort, 6/9 | Age 2-18y (60%
were 6-11y) | | Hospitalisation,
ED visit or OCS
course | OR | 0.73 | 0.5 to1.0 | | | control, clustering effect of care site | | |--|--|--------------------------|--|----------------------|--|------------------------------|---------------------------------|--|---|--| | Schatz 2003
Cohort, 6/9 | US, n=4,197, Age
3-17y (mean age
9.5y (SD 4.1) | Gender: female | Hospitalisation in study year | x/n (%) female | Hospitalised: 22/57 (38.6%) vs Not hospitalised: 1564/4140 (37.8%) | Not
significant | NA | Fisher's exact test | 'All potential
predictors' | | | Halterman
2001
Cohort, 5/9 | US, n=165,
From 11 primary
care settings,
Age 75% 6-12y | Gender | % with OCS courses | x/n (%) | Male 19/61 (31%)
Female 8/47 (17%) | NS | Comparison
male vs
female | Chi ² test | None | Male (59%)
Female (41%) | | Quinto 2011
Cross-
sectional, | US, n=32,321,
Privately insured,
Age 5-17y | Gender male Gender male | OCS use Hospitalisation | OR
OR | 0.86 | 0.81 to 0.90
0.94 to 1.06 | Reference group: female | Logistic
Regression | Age, sex, race, parent education, controller use, | Significant using OCS definition of exacerbation | | 10/10 | Age 3-17y | Gender male | or ED visit | OK | 1.00 | 0.94 (0 1.00 | | | GORD, diabetes | exacerbation | | Rust 2013 | US, n=43,156,
Medicaid
registered, | Gender male | ED visit in 90d
after ICS Rx | OR | 1.00 | 0.95 to1.05 | Reference group: female | Logistic regression | Age, gender, race,
rural/urban, state,
asthma severity, | | | sectional,
9/10 | Age 5-12y | Gender male | Hospitalisation in 90d after ICS Rx | OR | 0.88 | 0.77 to1.00 | | | doctor visits, ICS adherence | | | McCarville
2013
Cross-
sectional,
8/10 | US, n= 466, Inner
city low-income,
Age 8-14yrs | Gender: female | Hospitalisations,
ED visits,
unscheduled
care in past 12m | Incidence rate ratio | 0.79 | 0.63 to 0.99 | Reference:
male | Multivariable regression | Age, sex, race,
BMI, household
income, | | | Sarpong
1997
Cross-
sectional,
8/10 | US, n=138, Urban
area, Mean age
10.1y (SD 2.9) | Gender male | Hospitalisation | OR | 1.29 | 0.64 to 2.60 | Reference group: female | Univariate
logistic
regression | Multivariable (age, sex, race, area of residence, medical insurance) | | | Dales 2002
Cross-
sectional,
7/10 | Canada, n=2,986
children from 136
schools,
(5-19yrs) | Gender male | Hospitalisation | OR | 1.01 | 0.78 to 1.30 | Reference
group: female | Outcomes weighted for each student based on probability of the school being sampled and response rates | None | Statistical
adjustment for
design effects
(including ICC) | | Stingone
2006a | US, n=530, Inner city minority population, Age 5-12y | Gender: male | Hospitalisation
or ED visit in
previous 12m | OR | 2.22 | 1.31 to 3.76 | Reference
group: female | Multivariate
logistic
regression | Sex, income,
ethnicity, usual
care, delaying
care, insurance | | | Cross-
sectional,
7/10 | | | | | | | | | | | |---|---|--------------|---|---|--|-----------------------|---|-----------------------|--|---| | Akinbami
2009
Cross- | US, n≈ 6.7million,
census survey
data, Age 5-10y | Gender (M/F) | ED visits | x per 10,000
children with
current asthma | M: 988 (SE 157)
F: 1,296 (SE 243) | 95%CI
included 1.0 | | At-risk analysis | 'When higher asthm
among boys was ac
differences between | counted for, the | | sectional,
6/10 | and 11-17y | | Hospitalisations | x per 10,000
children with
current asthma | M: 313 (SE 51)
F: 244 (SE 39) | 95%CI
included 1.0 | | At-risk analysis | diminished. The RR
with girls for ED visit
and death had 95% | s, hospitalisations, | | Quezada
2016
Cross-
sectional,
6/10 | US, n=200,
Age 6-17y (mean
11y) | Gender | OCS use or
urgent care
during 24w study | x boys (%) | Exacerbators: 73
boys (66%) vs
Non-Exacerbators:
110 boys (59%) | P= 0.24 | Comparison
exacerbators
vs non
exacerbators | Fisher test | None | Recruited to a
trial of proton-
pump inhibitors
for asthma | | Canino 2012
Cross-
sectional,
2/10 | US/Puerto Rico,
n=804, White and
Hispanic children,
Age 7-15y: | Gender | ED use | x girls (%) | Frequent ED use:
112 (44%) vs
infrequent ED use:
236 (43%) | NS | Frequent (2+) vs infrequent (0-1) ED visit in previous 1y | Chi ² test | None | | ### Other health conditions ### Obesity | Study ID Design, Quality score | Country, Sample size, Population, Ages | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%Cl or significance | Reference
group or
comparator | Analysis used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |--------------------------------|---|--|---|---------------------------------|---|---------------------------|--|--|--|--| | Peters 2011
Cohort, 8/9 | US, n=473,
Deprived area,
Aged 5-17y (mean
age 9.5yrs) | BMI percentiles
<85 th
>85 th -<95 th
>95 th | Hospitalisation,
ED visits, UC
visits | was no relations admissions, ED | statement is made 'In hip between BMI and I visits, unscheduled off re utilisation (>0.19 – 0 |
nospital
ice visits or | | Chi ² test | None | | | Black 2013
Cohort, 8/9 | US, n=623,358,
Private insurance,
Aged 6-19y | Underweight:
BMI <5 th
percentile | ED visit and/or
OCS use | Adjusted prevalence ratio | 1.10 | 0.98 to 1.24 | Reference:
normal BMI | Prevalence ratios from Poisson | Age, sex and insurance payer | Normal Weight defined as (BMI ≥ 5th to | | | | Overweight
(BMI 85 to 95 th
percentile or
BMI>25) | ED visit and/or
OCS use | Adjusted prevalence ratio | 1.08 | 1.03 to 1.14 | Reference:
normal BMI | regression
models | | <85th
percentiles) | | | | Moderately
obese (BMI
>95th percentile
or BMI>30) | ED visit and/or
OCS use | Adjusted prevalence ratio | 1.16 | 1.10 to 1.23 | Reference:
normal BMI | | | | | | | Extremely obese (BMI >1.2 x 95th percentile or BMI >35) | ED visit and/or
OCS use | Adjusted prevalence ratio | 1.15 | 1.07 to1.23 | Reference:
normal BMI | ormal BMI | | | | Wu 2011
Cohort, 6/9 | US, N=1019,
Children age 5-12y | BMI z score | OCS use, ED visit or hospitalisation | β estimate | -0.039 | -0.14 to 0.07 | OR not given | Multivariate
modelling using
GEE | Age, FEV ₁ /FVC
Use of ICS, PC20,
eosinophils | | | Schatz 2013
Cohort, 7/9 | US, n=4,197, Age
3-17y (mean age
9.5y (SD 4.1) | Overweight (BMI 85 th to 94 th percentile); Obese ≥95 th percentile | OCS course | RR | 1.17 | 1.07 to 1.29 | Reference
group: normal
BMI | A GEE model | Sex, education | 46% overweight or obese | | Quinto 2011
Cross- | US, n=32,321,
Privately insured | Overweight | OCS use | OR | 1.21 | 1.13 to 1.29 | Reference group: normal | Logistic
Regression | Age, sex, race, parent education, | Weight defined as: | | sectional,
10/10 | Age 5-17y | Overweight | Hospitalisation or ED visit | OR | 1.07 | 0.99 to 1.15 | 1.15 BMI 1.36 Reference group: normal | controller use,
GORD, diabetes | Obese (BMI >95 th percentile) | | | | | Obese | OCS use | OR | 1.28 | 1.21 to 1.36 | | | | Overweight (BMI 85 th -94 th | | | | Obese | Hospitalisation or ED visit | OR | 1.04 | 0.98 to 1.11 | | | percentile) | | | Lang 2012
Cross- | US, n=10,599,
5-11yrs | Underweight
(BMI <5 th
percentile) | Exacerbation (visit to asthma specialist) | OR | 3.79 | 0.22 to 64.18 | Reference:
normal BMI | Multivariate
logistic
regression | Gender, race, age group, insurance status, asthma | Normal
Weight defined
as (≥ 5th to | |--|--|--|--|-----------------|---|------------------|---|--|---|---| | sectional,
8/10 | | Obese (BMI >95 th percentile) | Exacerbation (specialist visit) | OR | 1.41 | 0.64 to 3.11 | Reference:
normal BMI | | severity. FVC,
FEV ₁ ; ICS | <85th
percentiles) | | Mahut 2012
Cross-
sectional,
7/10 | France, n=491,
Age 6-15y | BMI
BMI z-score | OCS use or ED visit | | BMI
BMI z-score: | P=0.90
P=0.34 | | ANOVA
(unclear) | None | | | Wiesenthal
2016
Cross-
sectional,
7/10 | US, n=472,
Children with
persistent asthma,
Age 3-10y | Overweight/
obese BMI >85 th
percentile | ≥2 ED visits,
urgent care or
hospitalisations,
in the past year | OR | 1.3 | 0.87 to 1.93 | Reference
group: normal
BMI | Logistic
regression | Race, ethnicity,
caregiver age and
screen time | Baseline data from an trial. | | Stingone
2011
Cross-
sectional, | US, n=264,
Urban,
Aged 5-12y | Underweight:
<5th centile
Normal: 5th to
84.9th centile | ED visit in previous 12m | % with ED visit | Underweight
36.3%
Normal 30.5%
Overweight 49.2% | P<0.05 | Prevalence of
events by BMI
groups | | Gender, parent
education,
household income,
ethnicity, ETS | | | 6/10 | | Overweight/
obese: >85th
centile | Hospitalisation in previous 12m | % hospitalised | Underweight
24.7%
Normal 4.9%
Overweight 6.8% | P<0.05 | | | | | | Quezada
2016
Cross-
sectional,
6/10 | US, n=200,
Age 6-17y (mean
11y) | BMI (kg/m²) | OCS use or
urgent care
during 24week
study | Mean BMI | Exacerbators: 22.4
kg/m² vs
Non-exacerbators:
22.5 kg/m² | P=0.48 | Comparison
exacerbators
vs non-
exacerbators | Fisher test | None | Recruited to a
trial of proton-
pump inhibitors
for asthma | ## IQ/special needs | Study ID
Design, | Country, Sample size, Population, | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%CI or significance | Reference group or | Analysis used | Adjustments or variables | Comments
[Reviewers' | |---------------------|-----------------------------------|------------------------|-------------------------|-------------------|----------------------|-----------------------|--------------------|-----------------------|--------------------------|-------------------------| | Quality score | Ages | deminion | deminion | measure | Vuide | oigiiiiouiioc | comparator | | Variables | interpretation] | | Bacharier | US, n=1,041, | IQ (Not stated, | Prior | OR | 0.98 | 0.97 to 0.99 | Lower IQ = | Logistic | Clinic, race, | CAMP study | | 2003 | Mild or moderate | but presumably | hospitalisation | | | | higher odds of | regression | income, and | baseline data | | Cross- | asthma, | a continuous | (at any time | | | | prior | | gender | | | sectional, | Age 5-12y | variable) | during their life) | | | | hospitalisation | | | | | 8/10 | | | | | | | | | | | | Stingone | US, n=530, Inner | Special | Hospitalisation in | % hospitalised, | Special education: | P<0.05 | Prevalence of | Chi ² test | Sociodemographic | | | 2006b | city minority | education | previous 12m | | 18.3% vs General | | events by | | factors | | | | population, | classes | | | education: 6.9% | | | | | | | Cross- | Age 5-12y | Special | ED visit in | % with ED visit | Special education: | P<0.10 | education | | | |------------|-----------|-----------|--------------|-----------------|--------------------|--------|-----------|--|--| | sectional, | | education | previous 12m | | 54.9% vs General | | class | | | | 7/10 | | | | | education: 44.1% | | | | | #### Parental health | Study ID | Country, Sample | Risk factor | Exacerbation | Effect | Effect measure | 95%Cl or | Reference | Analysis used | Adjustments or | Comments | |---------------|-------------------|-----------------|-----------------|---------------|-----------------|--------------|----------------|---------------|-------------------|-----------------| | Design, | size, Population, | definition | definition | measure | value | significance | group or | | variables | [Reviewers' | | Quality score | Ages | | | | | | comparator | | | interpretation] | | Wood 2002 | US, n=386, | Parental mental | Parent reported | Incident Rate | 0.99 (SE 0.001) | P<0.001 | For each 1- | Logistic | Age, sex, | | | Cross- | Deprived | health | attacks needing | Ratio (SE) | | | unit change in | regression | parent education, | | | sectional, | population, | | medical care | | | | 5-item Mental | - | quality of care | | | 5/10 | Age 2-12y | | | | | | Health scale | | | | | | | | | | | | (SF-36) | | | | #### Parent marital status | Study ID
Design,
Quality score | Country, Sample size, Population, Ages | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%CI or significance | Reference
group or
comparator | Analysis used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |--------------------------------------|---|---|--|-----------------------------|----------------------|-----------------------|-------------------------------------|---|---|--| | Dales 2002 Cross-sectional, | Canada, n=2,986
children from 136
schools,
Age 5-19yrs | Parent marital
status-
single, never
married | Hospital
admission | OR | 1.92 | 1.18 to 3.12 | Reference
group: married | Outcomes
weighted for
each student
based on | None | Statistical
adjustment for
design effects
(including ICC) | | 7/10 | , | Separated,
divorced,
widowed | Hospital
admission | OR | 0.96 | 0.67 to 1.36 | | probability of
the school being
sampled and
response rates | | | | Wood 2002
Cross-
sectional, | US, n=386,
Deprived
population, | Marital status: single | Parent reported attacks needing medical care | Incident Rate
Ratio (SE) | 0.90 (SE 0.06) | P=0.12 | Reference group: married | Logistic regression: | Age, sex,
parent education,
quality of care | | | 5/10 | Age 2-12y | Marital status: single with partner | Parent reported attacks needing medical care | Incident Rate
Ratio (SE) | 1.16 (SE 0.09) | P=0.08 | Reference group: married | | | | #### **Co-morbidities** | Study ID | Country, Sample | Risk factor | Exacerbation | Effect | Effect measure | 95%Cl or | Reference | Analysis used | Adjustments or | Comments | |---------------|--------------------|--------------|--------------|---------|----------------|--------------|------------|---------------|-------------------|-----------------| | Design, | size, Population, |
definition | definition | measure | value | significance | group or | | variables | [Reviewers' | | Quality score | Ages | | | | | | comparator | | | interpretation] | | Quinto 2011 | US, n=32,321, | Diagnosis of | OCS use | OR | 1.08 | 0.96 to 1.21 | | _Hlk349690904 | Age, sex, race, | | | | Privately insured, | GORD | | | | | | | parent education, | | | Cross- | Age 5-17y | Diagnosis of | Hospitalisation or | OR | 1.58 | 1.41 to 1.77 | Reference: no | controller use, | | |-----------|-----------|--------------|--------------------|----|------|--------------|---------------|-----------------|--| | sectional | | GORD | ED visit | | | | diagnosis of | GORD, diabetes | | | 10/10 | | | | | | | GORD | | | | | | Diagnosis of | OCS use | OR | 0.79 | 0.58 to 1.07 | Reference: no | | | | | | diabetes | | | | | diagnosis of | | | | | | Diagnosis of | Hospitalisation or | OR | 1.59 | 1.19 to 2.13 | diabetes | | | | | | diabetes | ED visit | | | | | | | #### **Nutritional deficiencies** | Study ID
Design,
Quality score | Country, Sample size, Population, Ages | Risk factor definition | Exacerbation definition | Effect
measure | Effect measure value | 95%CI or significance | Reference
group or
comparator | Analysis used | Adjustments or variables | Comments
[Reviewers'
interpretation] | |--------------------------------------|--|---|--|-------------------|--|-----------------------|---|---|---|--| | Brehm 2010,
Cohort, 7/9 | US, n=1024,
CAMP study, Age
5-12y | Vitamin D
insufficiency
(≤30ng/ml) | ED visit or
hospitalisation in
4 years of study | OR | 1.4 | 1.0 to 1.9 | Reference:
Vitamin D
sufficient
group | Multivariate
logistic
regression | Age, sex, BMI, race, income, treatment group, season, severity, | Deficiency: <30
ng/ml | | Blatter 2016 Case-control, | Puerto Rico,
n=304, Urban
population,
Age 6-14y | Folate
deficiency | At least one ED visit or OCS use in previous year | OR | 2.20 | 1.1 to 4.6 | Reference:
normal folate | Stepwise
multivariate | Sex and age | Deficiency <20
ng/ml | | 7/9 | | Vitamin D insufficiency | At least one ED visit or OCS use in previous year | OR | 2.8 | 1.5 to 5.2 | Reference: no vitamin D insufficiency | | | Deficiency: <30
ng/ml | | Brehm 2012 Cross-sectional, | Puerto Rico,
n=287, Children
from San Juan,
Age 6-14y | Vitamin D insufficiency | At least one ED or urgent visit, OCS course, hospitalisation | OR | 2.6 | 1.5 to 4.7 | Reference: no
vitamin D
insufficiency | Stepwise
multivariate | Age, sex, vitamin
D level, use of
ICS, African
ancestry, | Deficiency: <30
ng/ml | | 9/10 | | High vitamin D intake (diet or supplements) | At least one ED or urgent visit, OCS course, hospitalisation | OR | 1.1 | 0.6 to 1.9 | Reference
group:
unknown | | | | | Searing 2010 Cross- sectional, 5/10 | US, n=100,
Age 0-18y | Vitamin D level | OCS use | Median (IQR) | OCS use: 25 (18-
30) vs no OCS
use: 32 (25-40) | P=0.02 | Comparison of
vitamin D level
in group with
vs no OCS
use | Wilcoxon test
with Chi ²
approximation | None | [only 14 children had OCS use] | #### References in alphabetical order Adams RJ, Fuhlbrigge A, Finkelstein JA, et al. Impact of inhaled anti-inflammatory therapy on hospitalization and emergency department visits for children with asthma. Pediatrics 2001;107:706-11 Akinbami LJ, Moorman JE, Garbe PL, et al. Status of childhood asthma in the United States, 1980-2007. Pediatrics 2009;123 Suppl3:S131-45 Andrews AL, Simpson AN, Basco WT, et al. Asthma medication ratio predicts emergency department visits and hospitalizations in children with asthma. Medicare Medicaid Res Rev 2013;3:1-10 Arabkhazaeli A, Vijverberg SJ, van Erp FC, et al. Characteristics and severity of asthma in children with and without atopic conditions: a cross-sectional study. BMC Pediatrics 2015;15:172 Bacharier LB, Dawson C, Bloomberg GR, et al, for the CAMP research group. Hospitalization for asthma: atopic, pulmonary function, and psychological correlates among participants in the Childhood Asthma Management Program. Pediatrics 2003:112:e85-92 Baltrus P, Xu J, Immergluck L, et al. Individual and county level predictors of asthma related emergency department visits among children on Medicaid: A multilevel approach. J Asthma 2017;54:53-61 Black MH, Zhou H, Takayanagi M, et al. Increased asthma risk and asthma-related health care complications associated with childhood obesity. Am J Epidemiol 2013;178:1120-8 Blatter J, Brehm JM, Sordillo J, et al. Folate Deficiency, Atopy, and Severe Asthma Exacerbations in Puerto Rican Children. Ann Am Thoracic Soc 2016;13:223-232 Brehm JM, Schuemann B, Fuhlbrigge AL, et al, for the CAMP research group. Serum vitamin D levels and severe asthma exacerbations in the Childhood Asthma Management Program study. J Allergy Clin Immunol 2010;126:52-8 e5 Brehm JM, Acosta-Perez E, Klei L, et al. Vitamin D insufficiency and severe asthma exacerbations in Puerto Rican children. Am J Respir Crit Care Med 2012;186;140-6 Brown MS, Sarnat SE, Demuth KA, et al. Residential proximity to a major roadway is associated with features of asthma control in children. PLoS One 2012;7:e37044 Butz AM, Eggleston P, Huss K, et al. Nebulizer use in inner-city children with asthma: morbidity, medication use, and asthma management practices. Arch Pediatrics Adolescent Med 2000;154:984-90 Canino G, Garro A, Alvarez MM, et al. Factors associated with disparities in emergency department use among Latino children with asthma. Ann Allergy Asthma Immunol 2012;108:266-270 Castro-Rodriguez JA, Ramirez AM, Toche P, et al. Clinical, functional, and epidemiological differences between atopic and nonatopic asthmatic children from a tertiary care hospital in a developing country. Ann Allergy Asthma Immunol 2007:98:239-244 Chilmonczyk BA, Salmun LM, Megathlin KN, et al. Association between exposure to environmental tobacco smoke and exacerbations of asthma in children. N Engl J Med 1993;328:1665-9 Covar RA, Szefler SJ, Zeiger RS, et al. Factors associated with asthma exacerbations during a long-term clinical trial of controller medications in children. J Allergy Clin Immunol 2008;122:741-747 Dales RE, Choi B, Chen Y, et al. Influence of family income on hospital visits for asthma among Canadian school children. Thorax 2002;57:513-7 Engelkes M, Janssens HM, De Ridder MA, et al. Real life data on incidence and risk factors of severe asthma exacerbations in children in primary care. Respir Med 2016;119:48-54 Farber HJ, Chi FW, Capra A, et al. Use of asthma medication dispensing patterns to predict risk of adverse health outcomes: a study of Medicaid-insured children in managed care programs. Ann Allergy Asthma Immunol 2004;92:319-28 Findley S, Lawler K, Bindra M, et al. Elevated asthma and indoor environmental exposures among Puerto Rican children of East Harlem. J Asthma 2003;40:557-69 Forno E, Fuhlbrigge A, Soto-Quiros ME, et al. Risk factors and predictive clinical scores for asthma exacerbations in childhood. Chest 2010;138:1156-65 Friedlander JL, Sheehan WJ, Baxi SN, et al. Food allergy and increased asthma morbidity in a School-based Inner-City Asthma Study. J Allergy Clin Immunol in Pract 2013;1:479-84 Halterman JS, Yoos HL, Sidora K, et al. Medication use and health care contacts among symptomatic children with asthma. Ambul Pediatr 2001;1:275-9 Haselkorn T, Fish JE, Zeiger RS, et al, for the TENOR study group.. Consistently very poorly controlled asthma, as defined by the impairment domain of the Expert Panel Report 3 guidelines, increases risk for future severe asthma exacerbations in The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) study. J Allergy Clin Immunol 2009a; 124:895-902 Haselkorn T, Zeiger RS, Chipps BE, et al. Recent asthma exacerbations predict future exacerbations in children with severe or difficult-to-treat asthma. J Allergy Clin Immunol 2009b; 124:921-7 Kelso-Visser CA, Brand PL. Does a single measurement of exhaled nitric oxide predict asthma exacerbations? Arch Dis Child 2011:96:781-2 Kwong KY, Morphew T, Scott L, et al. Asthma control and future asthma-related morbidity in inner-city asthmatic children. Ann Allergy Asthma Immunol 2008;101:144-52 Lang JE, Hossain J, Smith K, et al. Asthma severity, exacerbation risk, and controller treatment burden in underweight and obese children. J Asthma 2012;49;456-63 Lasmar LM, Camargos PA, Ordones AB et al. Prevalence of allergic rhinitis and its impact on the use of emergency care services in a group of children and adolescents with moderate to severe persistent asthma. J Pediatr 2007;83:555-61 Lieu TA, Quesenberry CP, Capra AM, et al. Outpatient management practices associated with reduced risk of pediatric asthma hospitalization and emergency department visits. Pediatrics 1997;100:334-41 Mahut B, Beydon N, Delclaux C. Overweight is not a comorbidity factor during childhood asthma: the GrowthOb study. Eur Respir J 2012;39:1120-6 Malhotra K, Baltrus P, Zhang S, et al. Geographic and racial variation in asthma prevalence and emergency department use among Medicaid-enrolled children in 14 southern states. J Asthma 2014;51:913-21 McCarville M, Sohn MW, Oh E, et al. Environmental tobacco smoke and asthma exacerbations and severity: the difference between measured and reported exposure. Arch Dis Child 2013;98:510-4 McCormack MC, Aloe C, Curtin-Brosnan J et al. Guideline-recommended fractional exhaled nitric oxide is a poor predictor of
health-care use among inner-city children and adolescents receiving usual asthma care. Chest 2013;144:923-9 Murray MD, Stang P, Tierney WM. Health care use by inner-city patients with asthma. J Clin Epidemiol 1997;50:167-74 Pesek RD, Vargas PA, Halterman JS, et al. A comparison of asthma prevalence and morbidity between rural and urban schoolchildren in Arkansas. Ann Allergy Asthma Immunol 2010;104:125-31 Peters JI, McKinney JM, Smith B, et al. Impact of obesity in asthma: evidence from a large prospective disease management study. Ann Allergy Asthma Immunol 2011;106:30-5 Pinto Pereira LM, Jackman J, Figaro N, et al. Health burden of co-morbid asthma and allergic rhinitis in West Indian children. Allergologia et Immunopathologia 2010;38:129-34 Pongracic JA, Visness CM, Gruchalla RS, et al. Effect of mouse allergen and rodent environmental intervention on asthma in inner-city children. Ann Allergy Asthma Immunol 2008;101:35-41 Pongracic JA, O'Connor GT, Muilenberg ML, et al. Differential effects of outdoor versus indoor fungal spores on asthma morbidity in inner-city children. J Allergy Clin Immunol 2010;125:593-9 Pyle RC, Divekar R, May SM, et al. Asthma-associated comorbidities in children with and without secondhand smoke exposure. Ann Allergy Asthma Immunol 2015;115:205-10 Quezada W, Kwak ES, Reibman J, et al. Predictors of asthma exacerbation among patients with poorly controlled asthma despite inhaled corticosteroid treatment. Ann Allergy Asthma Immunol 2016;116:112-117 Quinto KB, Zuraw BL, Poon KY, et al. The association of obesity and asthma severity and control in children. J Allergy Clin Immunol 2011;128:964-9 Rabinovitch N, Reisdorph N, Silveira L, et al. Urinary leukotriene E4 levels identify children with tobacco smoke exposure at risk for asthma exacerbation. J Allergy Clin Immunol 2011;128:323-7 Rabito FA, Carlson J, Holt EW, et al. Cockroach exposure independent of sensitization status and association with hospitalizations for asthma in inner-city children. Ann Allergy Asthma Immunol 2011;106:103-9 Robroeks CM, van Vliet D, Jobsis Q, et al. Prediction of asthma exacerbations in children: results of a one-year prospective study. Clin Exp Allergy 2012;42:792-8 Rosas-Salazar C, Ramratnam SK, Brehm JM, et al. Parental numeracy and asthma exacerbations in Puerto Rican children. Chest 2013;144:92-8 Rust G, Zhang S, Reynolds J. Inhaled corticosteroid adherence and emergency department utilization among Medicaid-enrolled children with asthma. J Asthma 2013;50:769-75 Sarpong SB, Karrison T. Sensitization to indoor allergens and the risk for asthma hospitalization in children. Ann Allergy Asthma Immunol 1997;79;455-9 Schatz M, Cook EF, Joshua A, et al. Risk factors for asthma hospitalizations in a managed care organization: development of a clinical prediction rule. Am J Manag Care 2003;9:538-47 Schatz M, Zeiger RS, Zhang F, et al. Overweight/obesity and risk of seasonal asthma exacerbations. J Allergy Clin Immunol in Pract 2013;1:618-22 Searing DA, Zhang Y, Murphy JR, et al. Decreased serum vitamin D levels in children with asthma are associated with increased corticosteroid use. J Allergy Clin Immunol 2010;125:995-1000 Spahn J, Sheth K, Yeh WS, et al. Dispensing of fluticasone propionate/salmeterol combination in the summer and asthma-related outcomes in the fall. J Allergy Clin Immunol 2009; 124:1197-203 Stewart KA, Higgins PC, McLaughlin CG, et al. Differences in prevalence, treatment, and outcomes of asthma among a diverse population of children with equal access to care: findings from a study in the military health system. Arch Pediatr Adolesc Med 2010;164:720-6 Stingone JA, Claudio L. Disparities in the use of urgent health care services among asthmatic children. Ann Allergy Asthma Immunol 2006a;97,244-50 Stingone JA, Claudio L. Asthma and enrollment in special education among urban schoolchildren. Am J Public Health 2006b; 96:1593-8 Stingone JA, Ramirez OF, Svensson K, et al. Prevalence, demographics, and health outcomes of comorbid asthma and overweight in urban children. J Asthma 2011;48:876-85 Sunshine J, Song L, Krieger J. Written action plan use in inner-city children: is it independently associated with improved asthma outcomes? *Ann Allergy Asthma Immunol* 2011;**107**:207-13 Thomas M, Kocevar VS, Zhang Q, et al. Asthma-related health care resource use among asthmatic children with and without concomitant allergic rhinitis. Pediatrics 2005;115:129-134 Tolomeo C, Savrin C, Heinzer M, et al. Predictors of asthma-related pediatric emergency department visits and hospitalizations. J Asthma 2009;46:829-34 Torjusen EN, Diette GB, Breysse PN, et al. Dose-response relationships between mouse allergen exposure and asthma morbidity among urban children and adolescents Indoor Air 2013;23:268-74 Vasbinder EC, Belitser SV, Souverein PC, et al. Non-adherence to inhaled corticosteroids and the risk of asthma exacerbations in children. Patient Preference and Adherence 2016;10:531-538 Vernacchio L, Trudell EK, Muto JM. Correlation of care process measures with childhood asthma exacerbations. Pediatrics 2013;131:e136-43 Wiesenthal EN, Fagnano M, Cook S, et al. Asthma and overweight/obese: double trouble for urban children. J Asthma 2016;53:485-91 Wood PR, Smith LA, Romero D, et al. Relationships between welfare status, health insurance status, and health and medical care among children with asthma. Am J Public Health 2002;92:1446-1452 Wu AC, Tantisira K, Li LL, Schuemann B, et al, for the CAMP research group. Predictors of Symptoms Are Different From Predictors of Severe Exacerbations From Asthma in Children. Chest 2011;140:100-107 Zeiger RS, Yegin A, Simons FE, et al. for the TENOR study group. Evaluation of the National Heart, Lung, and Blood Institute guidelines impairment domain for classifying asthma control and predicting asthma exacerbations. Ann Allergy Asthma Immunol 2012;108:81-7 Zhang T, Smith MA, Camp PG, et al. High use of health services in patients with suboptimal asthma drug regimens: a population-based assessment in British Columbia, Canada. Pharmacoepidemiology Drug Safety 2013;22:744-51